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1.0 INTRODUCTION
1.1 Identification and Significance of the Problem

With the ever increasing use of space satellites, and the concomitant increase in the amount of
man-made debris, the issue of accidental collisions with particles becomes more severe. While
the natural micrometeoroid population (Cour-Palais, 1969) is unavoidable and ass=med constant,
continued launches of spacecraft steadily increase the amount of debris (Kessler, 1287 and 1990).
The latter comprises items ranging from spent rocket cases, through defunct sztellites, to the
remains of bodies which have fragmented due to explosions or collisions. The result is a
distribution of particles ranging in size from microns to meters. As with the m: srometeoroids,
the population of debris is greatest for the smaller particles, tending to decrease --ith an inverse
power-law versus size.

To understand and model these environments, impact damage features (i.c, craters and
perforations) from returned spacecraft materials (e.g., Long Duration Exposure F::ility [LDEF],
Solar Maximum Mission, etc.) must be analyzed in order to determine the impact parameters
(e.g., particle size, particle and target material, particle shape, relative impz-t speed, etc.)
associated with each feature. Such analysis requires the use of generic analyt:> scaling laws
which can adequately describe the impact effects. Currently, most existing analy::c scaling laws
are little more than curve-fits to limited data and are not based on physics, so are ot generically
applicable over a wide range of impact parameters. Therefore, generic physics-based analytic
scaling laws still need to be developed.

The LDEF Meteoroid and Debris Special Investigation Group (M&D SIG) is cha: :ered to collect
and interpret the LDEF impact data and apply the interpretations to verify .nd update the
environment and impact effects models. Since the largest sources of LDEF data «;e impacts into
aluminum and FEP Teflon, the M&D SIG's efforts will be hampered without brczdly applicable
scaling laws. Consequently, the M&D SIG is supporting these POD Associates, Inc. (POD)
efforts to develop new generic physics-based scaling laws. The results of these eforts are being
presented in this report.

This report summarizes the development of two physics-based scaling laws for duscribing crater
depths and diameters caused by normal incidence impacts into aluminum and TFE Teflon. The
report then describes equations for perforations in aluminum and TFE Teflon for +armal impacts.
Lastly, this report also studies the effects of non-normal incidence on cratering ::1d perforation.

Although FEP Teflon was flown on LDEF, TFE Teflon is studied instead sinc: the available
experimental data (Horz, 1992) is for TFE Teflon and the material pararaeters ::rovided in the
literature (Harper, 1992; Moses, 1978, Dean, 1992; Rice, 1980) reveal some incor:zistences (some
references even fail to distinguish between TFE and FEP Teflon, which nave siightly different
properties). However, it is expected that TFE and FEP Teflon will show s:milar : 2sponses under

hypervelocity impact conditions.




1.2 Background

For bodies in low Earth orbit (LEO), whether orbital debris or antisatellite weapons, there is only
a small change in speed versus altitude even out to 2000 km, and the average speed is about 7.7
km/s (e.g., at 500 km). However, because different bodies are in different orbits, collisions are
possible with impact speeds between zero and about 15.4 km/s (average about 10 km/s),
dependent upon the angle between the velocity vectors. The two speed limits for same-altitude
bodies are for "tail-chasing” and "counter-orbital" conditions, respectively. These possible impact
speeds are independent of particle size and mass.

Micrometeoroids orbit around the Sun rather than the Earth, but their orbits can intercept the
Earth's. Since the Earth itself moves at about 30 km/s, while the micrometeoroids can have
speeds of up to 42 km/s (for highly elliptic orbits) at the Earth's orbital radius from the Sun, the
results can involve collisions with maximum impact speeds from about 12 to 72 km/s (for co-
orbiting to counter-orbiting cases, respectively). For a space platform in orbit around the Earth
(at 7.7 km/s), the additional effect of velocity vector summation results in micrometeoroid
collisions with speeds from almost zero to 79 km/s. In reality, very few collisions occur at the
highest speeds, and the average impact speed is about 19 km/s, with a meaningful population
range from a few km/s to about 25 km/s (Zook, 1990). As with the debris, the impact speeds
are independent of micrometeoroid sizes and masses.

While the debris is mostly concentrated in the higher inclination orbits (above 60 degrees), the
micrometeoroids effectively arrive from all directions. In both cases, the effect of the spacecraft
orbital motion always results in the highest flux (impacts per presented area per time) and highest
impact speeds on the RAM surface, for which the surface normal points along the spacecraft
velocity vector. Consequently, the RAM surface suffers the greatest degree of impact damage.
The pseudo-circular orbits of the debris result in impacts on the spacecraft surfaces which are in
the plane locally parallel to the Earth's surface below (i.e., RAM, SIDES and TRAIL), and the
impact rate rapidly decreases as the TRAIL surface is approached, and there are very few
collisions with the EARTH or SPACE facing surfaces. The micrometeoroids impact all surfaces,
but for LEO, the Earth provides significant geometric shielding (a "shadow"), reducing the
number of impacts on all faces except SPACE, but especially on the EARTH facing surface.

Note that, due to orbital mechanics and satellite geometries, very few of the impacts involve
"normal" collisions (impact velocity along the normal to the target surface), and thus the hits
occur with a large spread in impact angle. It is well known that the angle of approach modifies
the resulting penetration (Christiansen, 1992c), hence the effect needs to be properly understood
in order to correctly interpret the environment and the consequential impact effects. Likewise,
the effects of density of both the impacting particle and the target must be known. Presently, it
is assumed that most of the micrometeoroids have a density of about 0.5 g/cm® (Cour-Palais,
1969), while the debris value is about 4.7 g/cm® for small particles (less than 1 cm), and
decreases with increase in particle size (Kessler, 1987) (since most large pieces are not chunky
pseudo-spheres, but rather odd-shaped items which, on average behave as if partly porous).



Furthermore, the effects of impactor and target material properties (i.e., vield, {-acture strength,
melt energy, etc.) must be understood.

1.3 Damage Modes

The impact damage ranges from simple pitting, erosion and cratering for :mpact- into plastically
yielding materials, through conchoidal and star cracking for brittle targe:, to complete
perforation, large-scale spallation/fragmentation, and material melting and vapori:ation. The data
from LDEF indicates additional effects, such as delaminations of multilayzred m:aterials, and the
generation of rings of ejected material, and/or permanently deformed material. “hese effects are
in addition to thermal cycling, UV (ultraviolet light) embrittlement of plastics, zad AO (atomic
oxygen) erosion. All these effects can be synergistic. Impacts can modify maz:2rial properties
or morphologies, thereby altering the subsequent responses to UV, AO or tzermal cycling.
Likewise, thermal cycling, UV, and AO can alter properties such tha: the :=sultant impact
cratering, cracking and perforations are modified. These various effects, and the - synergies, are
all being studied.

1.4 Issues

To correctly interpret the space environment, the resulting modes of impact ¢.mage, and the
potential methods that may be employable to mitigate the effects, it is necessary to properdy
understand the "rules” of impact damage. Unfortunately, existing experimental facilities cannot
replicate the complete range of conditions. Gas guns are limited to maximum :peeds of about
8 km/s, electric guns have limitations due to sabot requirements, Van de Graaff ccelerators can
only be used with small charged particles, etc.. Further, many techniques have een developed
primarily to accelerate flat plates to study planar, one dimensional (1-D) strain, impact effects.
However, these approaches are not easily adapted to the problem of throwing -hunky bodies.
Consequently, only partial experimental testing can be done at present. In part.cular, there are
no satisfactory means of replicating the high speed (above 15 km/s) impacts of the larger particles
(above 0.1 mm diameter), of either metallic or (especially) non-metallic nature, in a well-
controlled manner that also allows for non-normal impacts.

As a result, reliance must be put on either extrapolation of (limited) expe:siment-| data obtained
at lower speeds, or with non-typical materials, or put on computational approaches. Although
computational capabilities have increased dramatically during the last decade {more rigorous
physical modeling, and much faster and more capable computers), the fact remaiss that properly
calculating impact problems is time-consuming and costly. Furthermorz, the .ccuracy of the
calculation is limited by adequacy of known material properties and bzshavic:, such as high
pressure EOS (equation of state), rate-dependent yielding and fracturirg, etc Much of the
experimental data needed is frequently obtained from 1-D experiments (plate s:ap). However,
while this approach eases the interpretation of material responses, it does not nec:ssarily provide
all the required data. For example, 1-D strain is an irrotational flow probiem, w:.ereas cratering
and penetration of one finite body into another clearly involves material rotatic::al flow. Thus
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computational techniques are usually best reserved for analysis of specific cases, and for
identifying sensitivities to parameter uncertainties.

As a result, a need still exists for analytic scaling laws which can adequately describe the impact
effects. Done properly, such laws are very useful for determining the "ball-park” of probable
responses, which in turn allows attention to be applied to specific cases via the computer codes.
These laws need not be perfect (10 percent accuracy is sufficient for many purposes), but they
do need to be rational and based on physics, such that extrapolations to experimentally
inaccessible conditions are credible and well-founded.

Unfortunately, many existing scaling laws are little more than curve-fits to limited data, and are
usually derived by investigators who invariably fit only their own data. Accordingly, there are
several such laws, and simple inspection reveals glaring discrepancies. For example, these laws
rarely agree on such issues as the proper power-index to be applied to impact velocities or
densities. Further, while some authors invoke material "hardness” numbers, others use yield
strengths. However, invariably such parameters are applied to only the target materials, but not
the impactors, despite the problem being one that deals with both bodies. Some laws fail to
acknowledge the well-known "supralinearity” observed in cratering, wherein the crater size
increases faster than the impactor size (all other factors remaining constant). Unfortunately, those
laws that do incorporate this effect are themselves in violation of "dimensional analysis".
Frequently, these formulations involve numerical "constants" that cannot be (!), since to adhere
to physical principles they must have an inverse dimension to that "left hanging” within the
equation. Further, while many such laws define an upper limit to validity (e.g., in velocity),
rarely is the corresponding lower limit given, despite the fact that the formulations are self-
evidently incorrect for low velocity (or density, etc.).

Many other problems abound. For example, if material yield strength is invoked, the value used
is the static one, whereas it is well known that many materials display considerable strain and
strain-rate sensitivities, and can also suffer from thermal softening effects. Most investigators
assume that the "cosine law" applies to impacts (i.e., the penetration is a function of the normal
component of the impact velocity). However, while this effect is observed for the lower impact
speeds (indeed, ricochets can occur for angles of incidence greater than about 60 degrees from
the surface normal), it is not necessarily true at the higher speeds. This arises because, at the
lower velocities, the impact phenomenon is dominated by momentum, but as the velocity
increases so the process becomes dominated by energy. Thus an impact by a small particle at
very high velocity will behave very much like a surface explosion. Such explosions do not obey
the cosine law. Also, few investigators explain what happened to the remaining component of
the incident energy and momentum.

Impact events fall into three basic classes: flat plate (1-D) planar impacts, chunky (pseudo-
spherical) impacts, and long rod impacts. For the smaller man-made space debris and
micrometeoroids, it is reasonable to assume the particles are chunky. However, for the larger
(and far more deadly) particles it is unlikely that they are spherical. Rather, the pieces will be
parts of thin plates, or antenna booms (etc.). These impactors will produce results more typical



of those for flat plates or long-rod penetrators. Surprisingly, although many in.estigators have
studied these responses independently, there have been few attempts to marry t:2 results. Thus
no analytic law presently exists that allows description of the gradual trend from flat plate
through spherical shape to long rod impact. Consideration of this issue will be v.seful in its own
right, since it allows a simple appreciation of the consequences of impactor changes in shape.
Further, this approach immediately reveals the source of confusion in ths mult:ple power-laws
that exist.

1.5 Technical Objectives

The technical objective for this work is to develop a set of generic scaling laws :hat adequately
describe the physics of impact events. This will include cratering, crackinz and spalling,
perforations, and melting/vaporization phenomena. The laws will take into account material

properties, sizes, shapes, velocities and angles of incidence, and will logiczally ext:apolate to both
high velocity conditions presently inaccessible, and to (known) low velocity co.:ditions.

Specifically, the objectives are to:

(1) Study the responses of aluminum and Teflon (specificzlly T} £) for normal
impacts by chunky bodies, developing a generic scaling law that describes
cratering through perforation, and

(2) Expand these studies to include non-normal impacts.

This report specifically studies the effects of both normal and oblique impacts intc aluminum and
Teflon targets, and also gives some data for other materials.

1.6 Technical Approach
POD has tackled the issue of impacts into aluminum and TFE Teflon via three -pproaches:

(1)  Application of physical logic in an attempt to determine wkich pa: .meters should
apply to the problem,

(2)  Application of hydrodynamic code calculations, using the CTH cc le (Bell, 1991)
from SNLA (Sandia National Laboratory, Albuquerque), to map o-:t the predicted
responses as functions of input parameters, and

(3)  Study of existing scaling laws and comparisons with both experii::ental data and
the results of CTH calculations to determine which (if any) such I fits the data.

This report first addresses the results of each of these approaches separately, the:. combines the
results into sets of conclusions for this study and recommendations for future e :orts.




2.0 PHYSICAL LOGIC

2.1 Hypervelocity Impact

Exactly what constitutes a hypervelocity condition is not well defined. For some investigators
the condition applies for all impact speeds above 5 km/s, while for others it occurs when u, >
c,, where u, is the impact speed and ¢, is the material (usually the target) stress wave speed
(whether this speed should be the Hugoniot shock, the low-pressure bulk, the extensional, the
longitudinal [dilatational], or the shear velocity is rarely made clear: most researchers reference
the low pressure bulk sound speed). Another definition would be whenever gross plastic flow
occurs in a rotationsl flow pattern, and the stress approximates the Bernoulli law for fluids. Note
that this definition is obviously material-specific, being easily reached for soft ductile metals but
applying only for higher impact speeds for the less ductile, high yield strength, ceramics and
glasses. Also note that this definition never applies to the well known 1-D plate slap condition,
since the true 1-D case does not involve rotational flow. POD is of the opinion that the latter
definition is the more logical one, since the impact community refers to hypervelocity conditions
associated with impactors of finite lateral dimensions, which invalidate 1-D stress logic (and
make the analysis much more difficult).

The reference to the Bernoulli stress state and associated material flow needs to be qualified. As
normally used in the impact community (and in this report) it is assumed that the materials are
basically incompressible. Strictly speaking, this approach is merely an approximation which
applies once the stresses decrease to much lower values than the initial impact stresses. Section
3.0, which discusses the CTH calculations, elaborates on this subject.

2.2 Basic Phenomenology

We first describe the fundamental physics of impact cratering in order to establish the overall
phenomenology. For convenience we chose our "chunky projectile” to be a cylinder striking the
target in the manner of a 1-D plate slap, with the end face of the cylinder parallel to the target

surface. The cylinder has length L and diameter d,, with L = d,, and the impact speed is u, and
is normal to the target surface.

Immediately upon impact two shock waves are generated, one propagating into the target and one
propagating back into the projectile. The initial stress, G, is given by the 1-D condition

o =2,Z u/Z, +2) ()
where Z is the acoustic impedance given by
Z = p(c, + su)u (2)

where p is material density, c, is the low-stress bulk sound speed, u is the induced particle
motion change in speed, and the term s is material-specific and related to the material Gruneisen
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parameter (see Section 2.3.5). Note that for low impact speeds the stress is pro.-ortional to this
speed, while for high impact speed the stress becomes proportional to the squa:e of the speed.
This 1-D stress can be very large. For a symmetric AI/Al impact, with ¢ = 2.7 g/em?, ¢, = 5.1
km/s, s = 1.4 and an impact velocity (u,) of 10 km/s, the stress is 1.63 Mbars (: 63 GPa). This
stress is grossly in excess of the plastic yield strength (Y) of aluminum, which is about 2.7 kbars
(0.27 GPa) for Al 6061-T6 (Shackelford and Alexander, 1992).

Release waves are generated at the edge of the projectile (free surface rel:ef) an:: at the edge of
the impact region within the target. The projectile release waves cause a droj: in the stresses
within the projectile, such that after a time t = r,/c, (with r, the projectile radius, zad c, the radial
release wave speed) the 1-D shock state reduces to a value closer to the Berno-lli stress. The
stress region in the target directly under the impact footprint itself propagates stress laterally,
while the corresponding release waves drop the stress under the impactor towar:s the Bernoulli
state, in the time t = r,/c, where c, is the release wave speed in the targe:. Init:slly, if the 1-D
stress is G, the target lateral stress is (G, - Y). The downstream particle mtion under the
impactor causes a shear wave to propagate laterally into the target. The correspor:ding maximum
propagated shear stress is limited to the yield value. Additionally, the corapressi-e lateral stress
itself propagates a stress of value 0.5(c,-Y), since the boundary under the edge of the impactor
is one of like-to-like material. This latter stress itself decreases with distarce ow:ng to the radial
divergence. This stress propagates as a longitudinal wave laterally and is in:ially far more
important than the shear wave. The radially moving longitudinal wave itself ha: a lateral stress
(that is thus perpendicular to the target free surface outboard of the impactor) o7 (0/2 - 3Y/2).
Upon reaching the target free surface this stress causes outer motion (upstream: and generates
a release wave traveling back into the target. Clearly, when 6, >> Y the material behaves
essentially as a fluid with stresses approximately equal in all directions (i.c., we -:ave a pressure
rather than stresses).

Thus after the release waves cross the impact axis the 1-D stress rapidly vanishe:_ and the target
material is set into a rotational flow, in a similar manner to the flow of a fluid around a moving
body. Material on the target surface outboard of the impactor flows in a combined radial-
outward/backstream-upward manner. This is the flow associated with the form:stion of jets of
material and the onset of the formation of the lips observed around crarers in Juctile targets.
Once this rotational flow is established the stress state on the impact axis becom.; the Bernoulli

one, given by

c = 0.5 pu’ 3)
where u is the local particle speed. For the symmetric Al/Al impact this stress -s given by

© =p, u'/8 = p U/ @
which is 337.5 kbars (33.75 GPa) for an impact speed of 10 km/s. Thus the Be:noulli stress is

much lower than the initial 1-D shock stress, but still well in excess ¢f the ::;uminum yield
strength. This Bernoulli stress is a transient state, only, for the case of a chunk- projectile and




itself rapidly decays unless continued momentum arrives at the projectile/target interface as
occurs for a long rod penetrator (LRP).

2.3 Cratering Behavior

It is well known that, when a projectile impacts an infinitely thick target at high velocities, a
crater is formed in the target. Cratering behavior for hypervelocity impacts has been studied
empirically for over 40 years. However, many issues have remained unresolved, including
whether the craters are fundamentally a function of impactor kinetic energy or momentum.
Likewise, the appropriate material parameters governing the responses have been uncertain.

23.1 Melt Craters

Some investigators assume that craters in targets are associated with the development of impact-
induced melting. However, this implies that the cratering phenomenon ceases once the stresses
drop below those necessary to promote melting caused by the excess entropy trapping of shock
waves. This would cause predictions of craters to be noticeably smaller than those observed,
especially for very ductile targets. The true formation of craters must therefore be related to
plastic yield flow. This makes sense since plastic flow is merely a fluid flow with off-set stresses
(i.e., stress deviators exist in the solid material). Melt and vaporization flow is merely plastic
flow without stress deviators (we here ignore deviators due to material viscosity, and also ignore
surface tension phenomena. Note: almost all hydrodynamics codes also ignore these two
phenomena. Hydrocodes include artificial viscosity, but this is done only to control numerical
instabilities that frequently occur when computing strong shocks). If the target cratering involved
pure melt (i.e., pure fluid) conditions another problem could also arise, namely the self-healing
of the crater due to the internal pressure within the fluid and the effect of surface tension. This
latter behavior is typical of impacts into true fluids (e.g., into water), where it is well known that
a transient crater is formed that disappears later due to the inflow of the material, leaving no
permanent crater.

Clearly, a "melt" crater is the minimum possible crater, and can be expected to dominate the
cratering process only for cases where the yield stress of the target is very large and the crater
surface is rapidly decelerated once the propagated stresses drop below those that induce melting
upon release. Thus the response is also sensitive to the rate of decrease in the yield strength
versus temperature (thermal softening). Materials which soften rapidly with increase in
temperature (e.g., ductile metals) will effectively extend the apparent "melt” region, whereas
materials which soften significantly only as melt is approached (e.g., ceramics) will restrict the
apparent melt region.

For reference, it should be noted that for the symmetric aluminum/aluminum impact incipient
melting occurs for an impact speed of about 5.6 km/s (1-D stress of 0.65 Mbar) while complete
melting occurs at about 6.6 km/s (1-D stress of 0.9 Mbar). Incipient vaporization occurs for an
impact speed of about 10.2 km/s (1-D stress of 1.67 Mbar). Thus no melt crater can be formed



for impact speeds of less than 5.6 km/s for this case, yet significant cratcring i: experimentally
observed in aluminum for impact speeds less than this value.

2.3.2 Initil Approach - The "Energy Equation”

One well known approach to cratering is the energy equation, which equates th  kinetic energy
of the impactor with the energy necessary to excavate a hemispherical crater. T ius we obtain

(x/12) p, d,’u’ = (x/12) p, d.’ E, )

where p is the density of projectile or target, d is the diameter of projec:ile or _rater, u, is the
impact speed, and E, is a limiting energy-per-mass to create the crater wi-iain the target.
Rewriting, we obtain

d/d, = (/P w / (E)" ©)

Thus this equation gives the familiar 2/3rd law for velocity, and a 1/3rd l:w for density.
However, there are obvious problems with this approach. Energy absorption (-r mass) in the
target is presumed to be a constant within the crater, which is clearly wrong s:1ce the energy
density varies with the stress levels. Further, the logic ignores energy absorpsion within the
impacting projectile, and also ignores the elastic energy stored in the stress wzve propagating
beyond the crater region. Thus the energy used to excavate the crater is alwa:s less than the
original impactor kinetic energy, but the fraction varies according to the relstive strengths,
moduli, thermal properties of the projectile and target, and the relative mass of t::e crater versus
the projectile. The use of a limiting energy density is really the same as defizing a limiting
stress, since energy-per-mass is equivalent to stress-squared divided by twice = modulus and
divided by the density.

Thus E =12 a/(pM) ()

where g, is the limiting stress, and M is a modulus of the target. Despite thes: problems this
energy equation does give a reasonable account of cratering provided an empirical multiplier is
used. For example, using the incipient melt enthalpy of aluminum of 150 cal/g (6 28 x 10° erg/g)
and an impact speed of 10 km/s, Equation 6 predicts d/d, = 5.42 which is clcse to observed
values.

23.3 More General Approach

Assume that upon impact a pseudo-spherical compressive wave is propagated :nto the target
centered on the impact point. Release waves from the target surface outboard ¢ the projectile
will cause the compression to be followed by a tensile wave. Release waves from within the
impactor do not cause tensile states by themselves since there is no inter-body st-ength between
the impactor and the target surface. Hence any attempt to propagate a tensile wave would merely
lift the impactor away from the target.




For hypervelocity impact the initial stresses and shock-induced heating will cause gross plastic
flow in the target. If the heating is sufficient to induce a state above melting (including
vaporization) the material will flow as a simple fluid. Once the stresses drop into the solid
response region the flow will be standard plastic yielding. There are three cases of such yielding:

(a)  during the passage of the compressive pulse,
(b)  during the passage of the trailing rarefaction pulse, and

(c) after the main pulse has passed a given point owing to the induced radial
divergence motion which leaves the material in a state of hoop strain and thus
hoop tension.

If the wave motion were truly 1-D, the radial (i.e., longitudinal) stress would reduce to zero while
the lateral stresses would attain a permanent (residual) stress due to plastic hysteresis. For a
radial stress greater than 2Y(1-v)/(1-2v) (i.e., twice the Hugoniot Elastic Limit, see Section 2.3.7)
this permanent stress is the yield value and is compressive (v is Poisson's ratio for the target).
For a radial stress between the one quoted above and Y(1-v)/(1-2v) the permanent stress lies
between zero and Y. For lower radial stresses the behavior is elastic only and no permanent
stress occurs.

However, the response is not 1-D and involves divergence. Thus the true lateral stresses (i.e.,
the hoop stresses) have the tensile hoop stress superimposed, giving a net tensile stress towards
the impact point. Only for radial distances far from the impact point will these stresses become
compressive as for the 1-D case, since the hoop tensions will become very small. These effects
are seen in the CTH calculations discussed in Section 3.0.

Assume that the latest state (c) defines the final crater surface. The divergent flow-induced hoop
strain is given by Ar/r where Ar is the induced radial motion at a distance r from the impact
point. The corresponding hoop stress then becomes

G=p, ¢y dtr =g, dtc/r @®
where G, is the tensile hoop stress, o, is the radial stress for the pulse, p, is the target density,
¢, is the target sound speed, u, is the induced particle speed and dt is the pulse time-width. Note
that the quantity g, dt represents the outward momentum per unit area at position .
For a spherical projectile the mean time for a full release wave reverberation across the projectile
is given by dt = 8r,/3c, where r, is the projectile radius and ¢, is the projectile sound speed, and
we assume that this time defines the effective width of the radial pulse.

Assume that the radial stress obeys the momentum rule

o, rP=0,r’ 9)
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where g, is the stress generated at the interface between the projectile and the .arget. Further,
assume that this latter stress is given by the Bernoulli law such that

0, =05pu’ =05pu’ =05p, (- w) (10)
where u, is the impact speed and v, is the induced target particle speed.
Thus p=p, /" + P | (11)
Assembling the terms we obtain

& = (853) 0, (r,* /) (c/c,) (12)

Now set this hoop stress to the yield strength of the target, Y, , and set the corrc_ponding radial
distance from the impact point as the crater radius, r,, to finally obtain

(/1) = (43)p/PXP/Y)(c/e)u/(1 + (p/p)'7) (13)

d/d, = r/r, = 1.10064(p,/p) (0 /V)*(e/e) u/(1 + (p,/p)"*’ (14)
Several interesting points should be noted about this equation:
(1)  There is no numerical multiplier which did not come from the a:.alysis.

2) The equation "looks like" the well known "energy equation”, bu. was based on
momentum.

(3)  The velocity index is the familiar 2/3rd value.
(4)  The density index is not a constant value, but depends on the rat.) of densities.

(5)  The crater size depends on the ratio of target density to target yiel:: strength. This
term in the equation has the same dimensions as an inverse sou::d speed to the
2/3rd power, but is not a material sound speed. Nevertheless, the cerm serves the
same function as a sound speed, in a similar manner to that inv:ked by others,
who frequently use terms of the form (uy/c) in their scaling laws. The yield
strength is that of the target only, and does not need to be referen:2d to any other
material. Further, note that the yield value used is the low-stress static one. The
rationale for this is that the model describes the terminal conc:tions of crater
formation. Factors such as strain-rate hardening and therma! softening are
subsumed into the physics of the more highly stressed regions of tl-2 crater region,
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and are treated as energy absorbing mechanisms within this region. (Note: our
logic does not invoke energy as a parameter).

(6)  The equation is sensitive to the ratio of target and projectile sound speeds.

(7)  The equation obeys the rules of dimensional analysis, since the grouping is
dimensionless.

The density function can be replaced by a simple ratio if we use the equivalence

(/PN = (/P 11 + (p,/P)'*)*" (15)

Doing this we immediately find that the index N varies. For a small ratio of projectile density
to target density N tends to 1/3. As the density ratio increases so N increases. When the ratio
is unity N is indeterminate. For a ratio larger than unity N becomes negative, being large near
the unity ratio, decreasing towards zero for very large ratios. This "odd" behavior may be the
excuse” for the varying indexes found in the literature.

Note that most experimental conditions prevent the choice of individual material parameters. To
change one property (e.g., density) invariably involves changing other properties (e.g., yield
strength, sound speed, etc.). Thus experiments invoke "clusters” of properties. For this reason
dependencies on such factors as material sound speeds are difficult to identify.

For the well-known symmetric impact of aluminum into aluminum, with density of 2.7 g/em?,
sound speed of 5.1 km/s, yield strength of 2.7 kbar (i.e, Al 6061 T6) and u, = 10 km/s, we
obtain d/d, = 6.934. This is near the observed values. However, this is probably a coincidence!
This case is also one that "removes” many dependencies owing to the unity value of the groups
involving density and sound speed.

POD believes that Equation 14 contains all the pertinent material parameters for hypervelocity
impacts into highly ductile targets. Surface fracture craters are not presently included in this
model owing to the assumption that highly ductile materials consume significant energy during
the strain-to-fracture. This effect causes a rapid decrease in peak stress and thus prevents fracture
(i.e., it results in large fracture toughness; see Section 2.3.10). However, the equation has several
pitfalis and the power indexes are not necessarily correct.

2.3.4 Caveats

The caveats include:

(1)  The assumption of a truly hemispherical stress wave is not correct. This point is readily
demonstrated by considering the impact of a chunky cylinder as described before. The

expanding compressive stress front only asymptotes towards a spherical wave at radial
distances which are large compared to the impacting projectile radius. Thus for crater
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radii which are not large compared to impactor radius the wave front s unlikely to be
spherical. Similar arguments apply to the target surface-generatzd rele:se waves which
cause tensile waves to follow the compressive pulse. These waves are zentered outside
of the impactor, and only coalesce into a single pseudo-spherical wav:. after travelling
several impactor radii.

Equation 9 describing stress versus distance presupposes a constznt pul: s-width. This is
only true for a non-dispersive condition (e.g., a linear-elastic response; In reality, the
dispersion associated with hydrodynamic wave propagation always ca..ses the pulse to
widen. This has the effect of modifying the power index for stress ve: sus distance.

Thus we have o rdr,= gr’dr (16)

where dr is the pulse-width at either the radius r from the impact point, ¢ at the impactor.
Dispersion gives dr, > dr,. Thus a more correct description would be

or=¢6r" withN>2 an
This will modify Equation 13 to give
(/e = (43) (p/P) (YY) (cdcy) ud / (1+ (p/P)'™Y (18)
then we obtain the following equation
(/5 )=(473) (0, p )™ (o Y YNV c /e Y PPN V(1K /)Y P (19)
Thus we finally obtain

(AU)=(43)™" (0PI ™ PV ™ (/e ™ uI (L + (p /P ) Y (20)

Note that this modifies the various power indexes. The discussion abo e also defined N
> 2. As an example, if N =2.5

(4/d)=1.0857(p/p ) *(P/Y) (/e *Tu (1 + (p /P )" 1)

Thus a proper description that includes the dispersive nature of the propgating wave wil]
give a more complete equation for cratering in ductile targets. Note th:t N> 2 produces
a power index for impact velocity which is somewhat smaller than 2/3. An index of close

to 0.58 has been previously suggested by Holsapple (1987). Fer this -2ason we choost
to "lock” our equation as given in Equation 21.

Substituting values for Al 6061-T6 for both the projectile and the tar et, and assuming

an impact speed of 10 km/s, we obtain d/d, = 5.26 which is also clo:2 to observation:

and to the results from the CTH hydrodynamic code calculatioris (see »elow).

13

L e

[P

SHEHE ] W

(R RRIEt

Pl

Vg e |

vy i

Wbl



€))

@

The logic presupposed that the active driver-stress ceased after the time t = 8r,/3c,, which
is one complete reverberation through the projectile, both axially and laterally. This does
not account for the entire projectile momentum. However, it probably does describe the
conditions for the diameter of a crater since the surface of the target is the region most
affected by the Bernoulli flow. The late-time remaining momentum does not contribute
to the lateral radially propagating stress, rather it contributes to the axially propagating
stress. This is because once the full diameter of the projectile has penetrated the target
surface, there is no further lateral "push" to the target. This is one reason why craters are
not truly hemispherical. The same logic is expected to apply to the crater diameter
produced by an LRP. For an LRP the initial stress conditions are identical to those of a
chunky projectile. Only after the time 8r,/3c, does the target "know" that "extra matter"
exists in the rod. Thus beyond this time the Bemoulli stress at the head of the rod
remains. Use of the Bernoulli law leads to the well known penetration law for LRP
(Eichelberger, 1956). Thus rewriting Equation 10 gives

w(u,-u) = (p,/p)'"? (22)
and if we assume the time of action is
t =L/(u, - u) (23)

where L is the length of the rod being "consumed" with a speed (u, - u), then the
penetration (P) is given by

P=ut=(p/p)*L (24)

which is the equation describing the penetration of either a jet or an LRP into a target
(ignoring the initial and final states of penetration, and material strengths).

The equation includes the two stress wave speeds c, and ¢, However, these speeds are
not simply the low-stress values, but are averages over the entire stress histories. A more
accurate integral needs to be performed in order to obtain the appropriate values.

23.5 Crater Diameter Versus Penetration Depth

The above logic is thought to apply to the development of crater diameters (d,). There is no a
priori reason to expect the rules for penetration depth (P) to be the same. Part of the reason is
that, whereas it could be justified to include only part of the projectile momentum for the lateral
motion there is no obvious logic to use anything other than the total momentum for describing
the penetration depth, particularly if hoop-stress logic is employed. This immediately leads to
a different answer.
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Again assuming a pseudo-hemispherical crater, with equal local momentum p.r area over the
entire hemispherical surface regardless of angle relative to the impact axis, the axially-directed
momentum per area at a distance r (on axis) from the impact site is given by

I=(4n/3) p, 1,’ u/nr (25)
Using the hoop stress logic then leads to
P/d, = (112) (413)"" (p/P)"* (P/YD'"” (cup)” (26)

Thus this equation gives a direct 1/3rd law for densities, but also gives a 1/3r. law for impact
speed. A modification in this law can be invoked by noting that the sound s—eed term, c, is
really stress dependent, and should be ¢, = ¢y, + su where u is the induced loc-| particle speed
in the target.

Assuming the Bernoulli state to apply, we have u = u, /(1 + (p/p,)'™). Thus
P/d,=(1/2)(4/3)*(p,/p) (P /Y )2 {(cortsue/(1H(p/p,) *)ug; ' 27

For an Al/Al (6061-T6) impact at 10 km/s this equation predicts P/d, = 5.86 w.ich is too large
by a factor of almost two compared to both experimental data and the results fro:a the CTH code
calculations (see later). We have not yet found the reason for this factor. To m:zke the equation
more in keeping with experimental data we insert a factor of 1/2. However, th:s factor is made

permanent.

Next, we take note of material strengths (see below) by introducing a lower lin::t velocity term,
U, (target, critical speed). Equation 27 then becomes

PI=(UAYA3) (0P (P XY Kt 30 (140 /0 ) v el (28)

Note that Equation 28 gradually transforms from a 1/3rd law for velocity into a /3rd law at high
speeds, becoming

P/d, =(1/4) (413)'? (pP/pJ'n O™ (u)**(s /(1 + (P-/p,)m))m 29)

This transition depends on the ratio s/c,, with a low ratio causing the response :0 remain in the
1/31d law regime even for moderately high impact speeds, while a high ratio trzasforms into the
2/3rd law at lower speeds. Theoretically, the value for s = (1 + I')/2 where T :s the Gruneisen
parameter. Materials with very low I thus have low values of s. Such materiz:s are frequently
porous and highly energy absorbing (i.e., dispersive). Most solids have high vzues of I' (about
2.0) and absorb energy less (although shock entropy-trapping still causes a degre: of absorption).
We thus expect very energy-dispersive targets to display the 1/3rd law at modera:e impact speeds,
while most solids will rapidly display the 2/3rd law. These expectations are in accordance with
the conclusions of Holsapple (1987) who states that very energy-absorbing syst ms tend to obey
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the momentum rule for penetration depth, while truly non energy absorbing targets tend to obey
the energy rule. The meaning of energy "absorption"” is that part of the projectile kinetic energy
is irreversibly converted into heat and/or plastic deformation, which always occurs with porous
materials and also occurs to a lesser extent with strong shocking in solids. Note that for shocks
sufficiently strong to cause complete vaporization the heating is recoverable, since the energy
eventually is converted into kinetic energy of gas motion.

Note that if the local momentum is not uniform versus angle from the axis this merely changes
the leading numerical multiplier. For example, if momentum obeys the rule I(6) = I(0)cosO
then the term 4/3 becomes 2.

As with Equation 21 which described the crater diameter, POD believes that Equation 28 contains
all the relevant material parameters for describing crater depth, but that the various power indexes
are possibly incorrect.

The u, term is not included in Equation 21 for crater diameters. The logic for this is that the
near-free surface target response involves strong release motion. This means that the distinction
between elastic-plastic response and the true Bernoulli response is less apparent, so the transition
is more gradual.

2.3.6 Projectile Strength

The previous discussions have referenced only the target strength, but not the projectile strength.
During the initial pseudo 1-D impact the stress states in both the projectile and the target are
functions of their respective Hugoniots. At low stresses material strength results in an elastic
region up to the Hugoniot Elastic Limit (HEL) and an elastic wave only is propagated. For
stresses above HEL but below a stress & (defined below) a two-wave structure develops,
consisting of an elastic wave precursor followed by a slower plastic wave. In this stress regime
the precursor can pre-condition the material for later response to the plastic wave. For stresses
above G the plastic wave overtakes the elastic wave, resulting in only one shock wave equal to
the plastic wave. The stress G is defined as that point on the Hugoniot given by the condition
that the Rayleigh line from the HEL up to the Hugoniot be an extension of the path from zero
stress to the HEL. Generally, both the HEL and G are much smaller than the impact stresses for
hypervelocity conditions.

Ubpon passage of the shock wave through the projectile to its rear surface, stress release will occur
via a rapid elastic decrease and a slower plastic decrease (unless the liquid or vapor state is
induced, for which both yield strength and shear modulus vanish), and these release waves
propagate back to the projectile/target interface. However, from this time on the exact state of
the projectile has minimal effect on the subsequent cratering process, while the strength of the
target continues to influence the cratering process. This is the primary reason why only the target
strength is referenced.
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2.3.7 Strength Effects at Low Impact Speeds

However, these arguments are only valid provided the impact stresses are muc:: higher than the
HEL and & values. For low speed impact the material strengths become imp--rtant, ultimately
dominating the response. Clearly, if the impact produces stresses below the HE!. of the projectile
no permanent deformation of the latter occurs. Likewise, if the stress is below the HEL of the
target no cratering occurs (not even simple plastic indentation). The situatior is similar to the
correction terms used by Tate (1967) for LRP, where the Bernoulli equatio:: is modified by
adding a strength term to both the projectile and the target, as in

6=05p,(u-u+Y,=05pu’+Y, (30)

Note that this correction is itself wrong since the equation does not allow for -. solution at low
values of velocity. A more correct version would treat the strength terms in :he form HEL =
peu,,, and Y = 0.5pu_’ with ug, setting a velocity limit for each material. 'his form of the
equation does allow for solutions as impact speed drops to zero.

Specifically, if the Bernoulli stress limit is not achieved there will be no "fluid fi ‘w" induced and
the response will become elastic-plastic only. If the HEL is not achieve: the r-iponse is purely
elastic. The critical velocities for Bernoulli yielding are given by

for projectile: U, = (2Y,/p)(1+(p,/p) %) = (2Y,/0)*(1+(p/p,)"*) @31)
for target: ., = (2Y/p)2(1+(p/0)'™) = (2Y/R)*(1+{(p/p,)"™) (32)

For an AVAl impact of Al 6061-T6, the critical Bernoulli speed is 0.8 '4 km/s. The
corresponding speed limit for the HEL is much lower, being 0.039 km/s. Thi.s between these
two impact speeds the response is elastic-plastic, and no Bernoulli flow occurs

For TFE Teflon, Y, is about 300 bars and p, is 2.17 g/cm’, while for alumin..m 6061-T6 the
corresponding values are 2.7 kbars and 2.7 g/cm’, respectively. Thus for an alu=inum projectile
and Teflon target, u,, is 0.315 km/s, while u,, is 0.946 km/s.

As an example of these effects, consider an impact between an Al 60¢1-T6 j-rojectile and an
alumina target. For alumina the density is 4.0 g/cm® and the yield strength is about 60 kbars.
We find the critical Bernoulli impact speeds are 3.84 km/s for flow in the alumina and 0.815
km/s for flow in the Al. Thus an impact speed of less than 3.84 km/s will not :nduce Bernoulli
flow-style hypervelocity craters in the alumina target, but will cause flow in t::e Al projectile,
causing a crater which is shallow relative to its diameter. The reverse occurs :f projectile and
target are exchanged (i.e., the projectile does not suffer flow but the target doe-, giving a crater
which is deep relative to its diameter). It is for impact conditions below the Bernoulli limit,
where elastic-plastic response dominates, that material hardness values zre rele -ant.
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The above example explains why ceramic materials are useful as armor against jets and LRPs.
The standard equation (Equation 24) indicates that normally the target material should be of high
density to defeat an LRP. Yet most ceramics are of low density. It is the unusually high value
of u_, for ceramics that explains their use, which is due to the high ratio of compressive yield
strength and low density. Most ordinance is of lower velocity than these critical speeds.

One technique for understanding the responses is to use what are known as P-u (Pressure-particle
speed) curves. Such curves are a well-known tool for 1-D impact solutions. The impact stress
is given by the intersection of the material Hugoniots. For most solids (except porous bodies)
the release paths are very similar to the Hugoniot, resulting in paths which are essentially "mirror
images” of the Hugoniots. To understand the responses for "chunky bodies" we introduce the
concept of Bernoulli adiabats, by analogy to the Hugoniot being also known as the Shock adiabat.
The Bernoulli adiabat applies only to compressive paths, with release following the normal paths.

This approach immediately explains an interesting anomaly: for 1-D impact of a low impedance
projectile into a high impedance target the projectile rebounds after the first stress wave
reverberation through the projectile, yet for a chunky projectile (same materials and impact speed)
the projectile does not rebound. The explanation is as follows.

Immediately upon impact the pseudo 1-D stress is given by the Hugoniot state. When the lateral
stress relief reaches the impact axis the stress drops to the Bernoulli stress. If both materials
undergo Bemoulli flow this stress is given by the intersection of the two Bernoulli adiabats. If
only one material flows then that material jumps to its Bernoulli locus but the other material
remains on its Hugoniot. If neither material flows then both materials remain on their Hugoniots.

Figure 1 shows the case of the low impedance projectile impacting the high impedance target.
The initial stress rises from (A) along the projectile Hugoniot to the intersection with the target
Hugoniot at (B). This stress then rapidly drops to the Bemoulli state (D). The rear surface
release wave now originates from the Bemoulli state instead of from the Hugoniot state (path DE
instead of BC). Thus the projectile velocity merely decreases instead of reversing. Subsequent
recompressions follow the Bernoulli adiabat, while release follows the normal path. Thus a series
of reverberations in the projectile occur as the latter comes to rest. Because the projectile is
simultaneously thinning as it spreads laterally each subsequent reverberation transit time becomes
progressively shorter. Thus the projectile rapidly stops.

The same logic also explains the very deep craters formed when "strong rigid" projectiles (e.g.,
tungsten carbide) impact "weak soft" targets (e.g. aluminum, lead) at relatively low speeds. If
the impact speed is above u,, for the target, but below u,, for the projectile, only the target will
jump to its Bernoulli locus while the projectile remains on its Hugoniot, as shown in Figure 2.
The projectile slows down via a large number of reverberations, and since the projectile does not
significantly deform these reverberations have constant transit time. Thus the total time taken
to stop is long, and the crater is deep.
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This particular logic also applies to the case of trying to capture a particle totally :ntact (no flow
except elastic-plastic deformation). To do so requires the impact speed to be below the ug;, of
the particle but above the u_, of the target. Since the particle properties are fixed the only option
is to choose a target with a very low u,; value. Referring to Equation 31 we see tiat this implies
the need for a target material with very low yield strength and very low density. "This description
applies to the case of trying to capture micrometeoroids with very low den:ity foams and

aerogels.

The result of the strength terms is to produce significant deviations in response a the low impact
speeds. Thus none of POD's equations are rigorous for speeds below the 1 km ; range.

238 General Comments on Scaling (Similarity) Laws

The above approaches reveal that it is rarely self-evident as to whether the an.iysis should be
based on a momentum logic or an energy one. This dilemma has important consequences since
momentum conservation logic (as used above) gives an inverse-square iaw (i.=., o, < r?) for
stress amplitude versus propagation distance, whereas energy conservation suzgests a simple
inverse law (o,  r'), for spherical divergence. Reality suggests that the tr:= response is a
mixture, with an index between -1 and -2. Further, the known non-linearities of nydrodynamics
suggest that the index is probably variable also, depending on stress levels =ad propagation
distances. Such effects explain why the various power indexes are difficult to Zerive, and also
imply that these indexes may not even be constants.

An obvious question is whether the process of impact cratering should cbey a simple" scaling
law. There are reasons to believe the answer is rigorously "no", slthoug: a *reasonable
approximation” may exist. The basis of this comment rests on work dore by s.ch scientists as
Zeldovich (1992) who studied the following simple case.

Imagine a semi-infinite half-space of gas of initial finite uniform density but of :ero temperature
and pressure (this problem is clearly a "thought experiment" since such a gas stai2 is impossible).
Allow a piston to impart a transient 1-D push to the free surface of the gas for a short period and
then be rapidly withdrawn faster than the release motion of the gas surface, thus transferring a

ballistic impulse to the gas.

The result of this impulse is to propagate a shock into the gas and simultaneou::y cause the free
surface of the gas to expand outward. Thus a "tumning point” exists within the gas dividing the
particle motion into two regions of inward-going and outward-going, and this pcint itself follows
the shock front but at a lower speed.

Zeldovich attempted to find a single similarity rule that described the behavior _ad, in particular,
predicted the rate of decay of the shock pressure versus propagation distance. He immediately
met a problem: it was impossible to establish a single rule that simultaneousl: conserved both
momentum and energy. However, Zeldovich was able to find an asymptotic rule that did obey
both conservation rules provided a piece of the problem was "ignored". Speciz:cally, if a "slug’
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of gas at the leading edge of the free surface expansion was ignored then the remainder of the
problem could be described by a scaling law which satisfied the conservation laws. This "slug"
contained the gas mass which was initially compressed during the ballistic impulse.

Thus Zeldovich concluded that a scaling law could be asymptotically determined as the "slug”
mass became negligible compared to the total mass in the moving gas, which itself continuously
increases with time. For the case of a diatomic gas (y= 7/5, ratio of specific heats) the result
was that the shock pressure decayed with the 4/3rd power of the distance. Note that Zeldovich's
problem was simple in the sense that it was 1-D and involved no material strength or phase
change effects. Note that the power index was between -1 and -2, even though this is a 1-D
condition.

POD is of the opinion that a similar situation applies to cratering. It can be anticipated that the
solution is really one which asymptotes when a portion of the problem is ignored. This portion
is probably related to the projectile mass and the mass of the target involved in the initial shock
wave phase. Thus the solution may have two parts, one describing the initial material response
and one describing the later cavitation phase. As the mass of the cavity (i.e., crater) becomes
large compared to that of the projectile and initially compressed target material so the response
can be expected to approach a condition that can be described by a scaling law that satisfies
conservation rules. This logic implies that simple scaling laws are to be expected only for impact
conditions which produce large craters (i.e., high speed, low target yield strength, high ratio of
projectile to target densities).

239 Supralinearity

Although supralinearity has been experimentally observed it is not predicted by any known
analysis based on hydrodynamics, neither do purely hydrodynamic codes predict it. Suggestions
have been made that the effect is related to the fact that the projectile flattens (i.e., "pancakes")
as it impacts the target, and that this modifies the apparent diameter of the impactor. This logic
has then been coupled with a suggestion that small projectiles are "stronger” than larger ones, and
thus deform less.

The hydrodynamic arguments given above involved the term r,’, this being a product of the cross-
sectional area of the projectile and the effective "time-width" of the projectile. In reality, the
term r,’ is a measure of the volume (or mass) of the projectile. Since the latter remains constant
during the initial impact the logic suggests that the exact shape of the projectile is not important,
at least for small changes. This accords with the common assumption that spheres can be
approximated by the equivalent-volume (chunky) cylinders and that cratering is a function of the
projectile mass. If this logic is valid, then the "pancaking” process should have no significant
effect. Thus supralinearity must be caused by some other mechanism.

A phenomenon that could explain the supralinearity is the "Petch Law" (Petch, 1953) which
describes the strength of a ductile material versus its mean grain size. This law states
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Y, = Y, (1 + (A/d)"?) (33)

where Y, is an intrinsic yield strength, Y, is the observed strength, d is the me..a grain size, and
A is 8 material-specific "grain size” parameter. The law predicts an increase :n yield strength
as the grain size decreases. Experimental data for aluminum (Anderson, 199G; suggests that A
is about 50 microns. Petch's theory involved consideration of the shearing tha: occurs between
grains. Based on this theory the quantity A is given by

A=nGy/Y,} (34)

where G is the material shear modulus and v is the material surface energy per _rea for opening
cracks.

POD thus suggests that supralinearity is related to target strength properties, an.: that this effect
is related to crater size and projectile size. However, only the former is importas:t because of the
arguments given above. Specifically, the important aspect of the problem is tl:= ratio A/r,, the
ratio of material-specific size and the crater radius.

To understand the logic, consider that the normal "bulk” yield strength of a mat-rial is really an
average over a volume large compared with the dimension A. If the "active volume under
consideration (e.g., the crater) becomes comparable to this dimension then t::e normal bulk
properties no longer apply. Clearly, if the crater involved only a single mi:erial grain the
governing yield strength would be that of the grain rather than of the average n:aterial. On the
other hand, if the impact were on a grain boundary the apparent material strength would be
lower. Since the probability of hitting a grain is higher than hitting a bouncary for a small
impactor the average response will be a higher yield value.

To apply the Petch Law we use Equation 33 to define the effective yield streng:h in Equations
21 and 28, and replace the term d with r. Unfortunately, the solution requires :teration of the
resulting equation owing to the form of the r, terms on either side of the formul: However, the
asymptotic solution can be readily obtained for A >>r,.

Let  (r/r) = (A/Yy) /(1 + (A/R)'®) =(A/Y,) (r/A)" (35)

with the term A containing all the details of density, impact speed, etc. Then :he asymptotic
solution becomes

(r/r )™ P=(AIY )(r,/A)'"?, or (/1 y=(A/Y )1 B(r /A ) N (36)

Note how we converted a dependence on r, to one on r,. Thus if the effective power index is

N = 3.5 (equivalent to the index used in Equation 21, which employed N+1 ratl.or than N), we
obtain

(1) = (A/Y)" (r,/A)'"* (37)
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giving a supralinear term with a power index of 1/6 (0.1667), which is thus the "small-limit"
index. However, the most-quoted supralinear index is that given by Cour-Palais (1985) with a
value of 1/18 (0.056). It is interesting to see whether the Petch law can explain the Cour-Palais
quote, without invoking "absurd" values for the power index N used in Equations 35 and 36.

The use of the Petch law produces a "downgrading” factor, F, in the crater sizes otherwise
predicted, so we multiply Equations 21 and 28 by this factor

ie., F = 1/(1 + (A/r)" (38)

Using A = 50 microns and N = 1/3 we compute F versus the "normal” crater prediction, r,. We
find that for r, = 1.0 micron F = 0.499, for r, = 10 microns F = 0.6761, for r, = 100 microns F
= 08367, forr,= 1 mmF =09349, andforr,=1cmF = 0.9775. We immediately see that the
"effective” supralinear index varies with crater size (hence projectile size). For very small craters
(i.e.. << 1 micron) the index approaches 1/6, while for large craters (>> 1 cm) the index
approaches zero. Thus the apparent index, n, must be in the range 0<n<1/6. What is relevant
is that comparing values over a range of crater sizes can lead to an apparent index in the region
of 0.034 to 0.073. Specifically, over the range 10 microns to 1 cm (or 50 microns to 1 mm) the
apparent index is 0.0534 (or 0.0546), which is very close to the Cour-Palais value. Thus the
Cour-Palais index may merely be an "apparent” index which applies over a restricted range of
projectile sizes. Figure 3 plots F versus r..

The corresponding value of A for Teflon is not well known since no quotes have been found for
the y term. If this term were similar in value to that of aluminum the value of A would be a
factor of about 1.5 larger than for aluminum taking into account the lower yield strength and
lower shear modulus of Teflon. This would have the effect of increasing slightly the
corresponding values of crater size (r,) required to produce a given F value, which in turn means
that the size range over which the supralinearity is observed would increase slightly.

If the above logic using the Petch law is correct then a very important corollary results: the
supralinearity does not apply over all crater sizes but is in reality a small-size decrease in crater
dimensions. In particular, the effect disappears for craters above about 1 cm diameter. It should
be noted that most (all?) of the experimental data illustrating the supralinear effect have involved
projectiles in the size range of microns to mm, which is consistent with the above logic and

expectations.

Two other factors could also produce a supralinear effect, namely thermal conduction and strain-
rate effects. If the strongly shock-heated regions were to rapidly cool via thermal conduction to
deeper lying regions then the operational yield strength would increase. Normally, thermal
conduction is ignored in hydrodynamic calculations owing to the fact that stress waves move
much faster than thermal diffusion waves. However, this difference in propagation rates is small
for very small scale geometries (below a few microns for metals). Thus very small craters may
become thermally "quenched" and grow less than would happen without conduction. This effect
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would be strong only for the smallest craters, and should be negligible for cr..;ers above 10

microns.

Strain-rate has been proposed as an important mechanism for supralir.earity, based on the
observation that the yield strength of many materials noticeably increases for very high rate
conditions. However, this suggestion has not been well proven in hydrocede anz:ysis. Further,
it has not been demonstrated that the cratering is a direct function of the sho.k front. The
increase in yield strength is observed for the shock front, but since the effect is rel ated to viscous
flow it is also observed that the stress relaxes back toward the normal yield vaiue behind the
shock front. Thus if cratering is related to the integral of the stress pulse versus ::me the strain-
rate effect will only slightly modify the cratering versus the absence of the eifect. A more
fundamental problem is the fact that strain-rate has the units of time, not lengt::. To obtain a
length parameter would require the combination of velocity/strain-rate. Indeed, :f strain-rate is
responsible for supralinearity then there should be a velocity dependence, such the: higher impact
speeds give systematic wsmaller” craters than would normally be expected. Thi. would reveal
itself as an apparent drop in the velocity index. Proponents of strain-rate logic never mention

this fact.
2.3.10 Brittle Material Response

Because TFE Teflon can behave in a brittle fashion it is appropriate to briet.y discuss such
responses. The major difference between a brittle material response and that of 2 ductile one is
that the former can produce radial cracks (centered on the impact point) and an cuter spall crater
surrounding the normal yield crater. Brittle materials fail readily under simple teasion by tensile
fracture. However, under compression (especially a tri-axial state with simuitaneous lateral
compressions) such materials display plastic yielding (especially if simultaneous:y heated). The
compressive yield strength is usually significantly higher than the tensile strengch. Indeed, for
hard ceramics and glasses the yield strength is very high. Ordinary soda-lime glass has a
compressive yield value of about 30 kbars (as evidenced by its ability to zccept hardness
indentations), while alumina has a yield strength of over 60 kbars (as evidenced dy it displaying
a Hugoniot Elastic Limit under 1-D shock compression).

We can develop an equation describing radial cracks by equating the koop si-ess logic given
before with the stress necessary to cause crack growth in the mode-1 manner. “his latter stress

is given by
12
Ornex = @Ky ST (39)

where K, is the fracture toughness (units of dyne/cm*?) and r is the radius from .ae impact point,
assumed equal to the length of the radial crack. The quantity a relates tc the local stress
distribution around the crack. The latter is difficult to evaluate from theory s-ace the stress is
not the same as that for a static simply loaded sample with a uniform far-fielc value. Instead,
we are dealing with a finite radially moving hoop tensile pulse which effectively applies its stress
in a more local manner near the crack tip. Further, the fact that several radial sracks can occur
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spaced around the impact point means that the "far-field" distance can be no more than the half-
distance between these cracks. Thus a is best determined by empirical experiment.

Equating the hoop tension (Equation 8) with Equation 39 gives

Tenat/Ty = (/@K ()¢ g™ 1,2 (40)
where Pur = P2/(R," + p'?)? (41)
The following should be noted:

(1) The equation predicts supralinearity with an index of 0.2. Cour-Palais (1985) quotes
this same index as being the one for brittle material response for the spall craters, versus
the index of 0.056 for ductile materials.

(2) The velocity index is 0.8 rather than the roughly 2/3 value for ductile craters.

(3) Because of these differences in the two indexes it follows that "cross-over" points
exist. Keeping all other factors constant, if the variable is either velocity or projectile size
there will be a critical velocity or critical projectile size where ro,, =r_, . Projectiles
which are both large and at high speed will tend to produce radial cracks which extend
out further than the corresponding ductile craters. Materials with low yield strength and
high values of fracture toughness (e.g., most metals) will tend to have r_,, <r_,_. For
this case the cracks are "lost" within the ductile crater. For materials with low fracture
toughness and high yield strength (e.g., most ceramics and glasses) the reverse occurs.
The ductile craters are limited in size while extensive radial cracking will be observed
extending beyond the crater.

Experimental impact data from Horz (1992) on TFE Teflon indicate spall cratering surrounding
a yield crater. However, when the samples are sectioned (see Figure 4) a series of radial cracks
are observed. These cracks are roughly equi-spaced around the hemisphere centered on the
impact point. The hemispherical surface which circumscribes these cracks is observed to intersect
the original target surface at the radius of the spall crater. Thus the spall crater radius is
intimately linked to the radial cracks, and the latter define the spall crater radius. The evidence
implies that the spall crater depth is determined by "peel-back” and fracture of the outer portions
of the material between the original surface and the first radial crack from the surface. Thus
Equation 40 gives the spall crater dimension. However, at present there is no simple manner for
predicting how many radial cracks will be produced, and thus how deep the spall crater may be.

23.11 Phase Changes and Momentum Enhancement
Thus far the phenomena of melting and/or vaporization have been discussed only in terms of the

induced fluid state which has negligible yield strength, shear modulus or tensile strength.
However, as vaporization starts to occur another factor must be included, namely the
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enhancement of the impact momentum caused by the backstreaming of the vapor. Although there
is always some backstreaming material during cratering (e.g., the jetted material and parts of the
crater lips which break off) the momentum associated with this is usually smal: if the material

states do not include vaporization.

The major effect associated with vaporization is a dramatic change in the behavi. r of the release
adiabat (isentrope). For solids and liquids the release adiabats are steep and iave very little
curvature in the pressure-volume (P-V) plane. Thus the release wave speeds arc high and there
is only a limited spread in the wave speeds (wave speeds are given by ¢’ = -V*iP/dV, where V
is specific volume). Furthermore, the expansion required to reach zero pressu: is also small.
Consequently, the stress relief is "rapid". The released energy (i.e., PdV) conve. :ed into motion
is also small (i.e., the shocked material remains hot even at zero stress).

For the vapor state, however, the release adiabats have significant curvature in th: - P-V plane and
significant expansion is required to reach zero pressure. Hence the average wav: speed is lower
and there is a significant spread in release wave speeds giving the well-known "Tzylor Fan". The
time to reduce the stress is much longer than for the solidlliquid states. Thus the extra
momentum is a consequence of the larger release pressure-time integral for vapc:s. The released
energy for a vapor is large and ultimately becomes converted totally into kinetic e:1ergy of motion
and thus the temperature adiabatically decreases as expansion occurs, for a full- vapor state (i.e.,
one whose adiabat passes above the material Critical Point).

For release states which cross the two-phase liquid-vapor condition there is & gradual change
from the liquid behavior to the pure vapor behavior as the initial shock loading increases.

If cratering is dependent on net momentum then the vaporization will czuse de-per craters, but
will have little effect on crater diameter since the latter is mostly determined curing the initial
reverberation within the projectile during which the "long release tail" has not developed. For
total vaporization of the projectile the net momentum increases by considerably iess than a factor
of two, partly because the vapor state of the projectile occurs upon generation of the first release
wave from the back of the impactor, and at this time the proj ectile is moving fo: ward with about
half the initial impact speed, but also because the vapor cloud expands hemisphe-ically upstream.

Since half the projectile momentum (for a like-on-like impact) is transferred to :he target during
the first shock wave motion from the projectile/target interface back to the ta:zet free surface,
only the second half of the momentum can "bounce”. Thus at worst we sxpect the total
momentum to be 1.5 the initial projectile value. This is an upper limit sinc: it assumes the
rebounding material remains as a solid particle with no lateral spreading.

An approximate evaluation of the additional momentum for total vaporization: can be obtained
by using the logic developed by Gurney (1943). The essence of Gurney's theories is that the
expanding vapor cloud rapidly asymptotes to a condition where there is a leadi::g edge velocity,
u, , which becomes a constant, and the gas between the source of the gas e-pansion and the
leading edge, at 1, has a linear distance relationship of the form u(r) = ru, r,. The second
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assumption is that, at any time, the density in the vapor cloud is a constant determined solely by
the volume swept out by the advancing edge r, versus the source. Using these rules, and
assuming hemispherical expansion from a fixed source we integrate the energy within the
hemisphere and set it to one-half of the impactor energy (since one-half is transferred during the

same wave motion) to get
u, = (5/6)'* u, 42)

We now integrate over the hemisphere to obtain the net directed momentum (i.e., along the
impact axis) to get

I=(3/16) (5/6)'"2 1, - (43)
where 1, is the initial projectile momentum. Thus the total momentum becomes
Lo=11711, (44)

A further refinement occurs when we assume that the vapor expansion occurs from a moving
source. For a like-on-like impact this speed is -uy/2, where we define a positive speed as the
backstreaming motion, and the initial impact speed as negative. Hence the velocity distribution

becomes

= - /2 + /1, (u.+ uyf2) (45)

Note that this implies there is a "turning point" within the vapor, which divides the flow into two
regions, one following the projectile/target interface and the other flowing back upstream. Next,
for a like-on-like impact one-half of the kinetic energy is transferred to the target during the first
shock wave transit through the projectile, before the vapor expansion starts. We therefore equate
the remaining half-energy with the energy in the hemispherical cloud by integrating

To
0.5 KE, = nr,’ p, u,/3 = J 2xrp, (v,%2) dr (46)
where P, = 2p, (1,/1.) 47)
Solving, we obtain: u,= +uy/4 (48)

Thus the vapor backstreams with a leading edge speed of one quarter of the initial impactor
speed. Integrating over the hemisphere for the momentum we find

Momentum = [/32 (49)

Thus the total momentum becomes
Lw=1 +1/32=1.03 ], (50)
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Thus the effect of strong vaporization of the projectile is to produce an increzse in the total
momentum by a factor in the range of 3% to 17%, with the true value closar to tl:= smaller quote
since the vaporization generates much of its motion before the projectile stops. For this reason
the effect is not readily identified in terms of crater sizes, and the cratering respcase will appear
to be "smooth" with no "jumps” as vaporization occurs. This implies that ultrz-hypervelocity
impact responses will appear to be continuations of the lower speed impact res;-onses.

Because a portion of the target crater can also be vaporized the momenium cs:: increase even
more. However, since the peak stresses drop rapidly with propagation distance th- target material
subject to vaporization is usually only a small fraction of the crater, exce:t for v=ry high impact
speeds. However, it is necessary to be aware of a "chicken and egg" probiem. I awrence (1989)
has predicted a significant momentum enhancement for very high speed impacts. The source of
this enhancement is the large mass ejected from the crater which is assumed to He in the vapor
state and to contain a significant fraction of the projectile kinetic energy. However, is the mass
ejected greater because the momentum was higher, or is the momentum higher b=cause the mass
ejected is greater? POD believes the latter is the correct interpretation. If so, the momentum
enhancement provides a larger net push to the target but may have little effect -n the cratering
dynamics. This is because a large fraction of this momentum consists of a long-lived low
pressure state, and this low pressure will tend not to cause much further cratenng. Thus if the
pressure decreases below that necessary to ensure the Bernoulli state in the targst, the cratering
efficiency rapidly drops. Overall, the effect of strong vaporization of the targe: is probably to
deepen the crater somewhat, but not necessarily by a significant amount This -natter deserves
further study.

2.3.12 Dimensional Analysis

Many investigators (Holsapple, 1987; Herrmann, 1986, and others) have used t:;e techniques of
"Dimensional Analysis" to derive cratering scaling laws. Such techniques empioy Buckingham
"pi" groups of parameters, as described in Bluman (1981). Thus because the qucients (d/d,) and
(P/d,) are both dimensionless, the "pi" groups must likewise be dimensionless. However, this
logic is really a mathematics-based one rather than a physics-based one. Ccasequently, it is
necessary to correctly identify the material parameters which make up the “»i" groups, else
erroneous answers can ensue.

For example, for densities it is common for the ratio (p,/py) to be used. A cor::=sponding group
used by POD, however, is ((p,/p)/(l+(pl/po‘”)’) which is within POD's equati::ns for diameter.
Whereas the former ratio is "intuitive”, the grouping used by POD is not.

Similarly, it is common to find the groups (p c/Y) and (w/c) in mary scal:ag laws. POD,
however, puts these two groups together to obtain ((p/Y )u?) which is stilt dimer:sionless but does
not include material sound speed, which is handled independently.

The primary reason for these differing groups in POD's analyses is that, unlike the Dimensional
Analysis approach, POD's analyses are based on a consideration of the physic- involved. Thus
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POD's equations obey the rules of dimensionality as a by-product of the analyses, rather than as
the starting point for the analyses. POD believes that deriving results on the basis of physical
logic is a much more appropriate approach than the use of Dimensional Analysis.

2.4 Perforation Behavior

The above discussion applies to infinitely thick targets. As the target is progressively thinned,
however, the following sequence of events occurs, assuming all other factors remain constant.

First, below a certain thickness the target rear surface will display a permanent outward bulge.
This is due to a region of target beyond the crater depth being subjected to a permanent residual
compressive plastic stress which attempts to relieve its stress by outward motion. This bulge
progressively increases as the target is thinned. For slightly thinner targets an internal spall
occurs (a void) allowing the back surface bulge to protrude even more. However, the bulge does
not break off, and the void can only be observed by sectioning the target.

Second, with further target thinning, the bulge splits and lips are formed around a spall crater on
the target rear surface. This occurs because the reflected compressive stress returns into the
target as a tensile rarefaction. Beyond a certain distance away from the rear surface, the
algebraic sum of this tension and the remnant of the still-forward moving compression add up
to a tensile value which exceeds the local target material strength. This explains the void
described above. The spalled region detaches itself due to the stored momentum which allows
the resultant edge stresses to exceed the tensile strength.

Third, with further target thinning, the final spall surface (there can be multiple sequential spalls)
approaches the original front-surface crater depth. The resulting relief of stress at the deepest
regions of the crater also allows continued increases in the crater depth. Thus at a critical target
thickness the rear surface spall meets the crater depth, and a hole is created through the target.
This condition is generally referred to as the "ballistic limit".

Fourth, for even thinner targets, the central hole rapidly increases in diameter. Simultaneously,
relief waves from the target back surface arrive at the front surface and begin to modify the crater
mouth, ultimately reducing its diameter. Until this happens, the crater mouth is essentially
"ignorant” of the target rear surface behavior, and the perforation response resembles a case of
a "truncated” crater, where only the deepest sections of the crater are affected.

Fifth, even thinner targets cause the central perforation hole to pass through a maximum in
diameter, and to then decrease. Simultaneously, the crater mouth diameter progressively
decreases, as does the rear surface spall hole. These two latter diameters are always larger than
the central hole.

Sixth, for very thin targets, all three diameters decrease in a systematic manner, becoming closer

in value to each other and also to the projectile diameter. Ultimately, a hole is formed which
asymptotes to the same size (and even cross-sectional shape) as the projectile. Thus for very thin
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targets (i.e., T<d/100) the projectile essentially punches its own cross-sectior.sl image through
the target. This effect is of major use for identifying projectile dimensions, sincs the target gives
a direct measurement of the latter, while the damage done to the projectile :s minimal. This
minimal projectile damage is a consequence of the very short-lived shock pulse which enters the
projectile. Such thin pulses undergo very rapid hydrodynamic attenuation. Thi.- the stress levels
rapidly drop and any damage in the projectile is limited to a thin skin on the . mpact surface.

All these events have been well characterized by laboratory impact experiment: However, such
experiments have been done over a limited range of impact speeds, or with anly very small
projectiles (e.g., micron sized) and with a limited range of impacting proj.ctile and target
materials. It therefore remains an issue of establishing the physics of the procasses in order to
anticipate the responses for generic conditions.

2.4.1 Stress Wave Logic: The Ballistic Limit

We shall attempt here to describe the processes leading to the Ballistic Limit .ondition. Note
that the latter term has more than one definition. For some researchers it represe:ts the condition
of just producing a through-hole; for others it represents the case where the proj=ctile just passes
through the target (i.e, d, = d). However, the change in target thickness (=l other factors
remaining constant) between these two conditions is quite small. Since POD :s attempting to
establish physical models for development of scaling laws we believe that suc:: "nuances” are
beyond the capabilities of simplified analysis. Consequently, we shall describe a seneric Ballistic
Limit condition that does not attempt to distinguish these subtleties.

The logic invoked to explain front surface cratering implies that a spher cally diverging
compressive stress wave moves through the target as if centered on the im_act point. At
distances beyond the crater depth the momentum law is expected to apply. Th:s gives

q, = Or,/! " (51)

where g, is a source stress originating at the projectile/target interface, I, :s the projectile radius,
r is the local distance from the impact point, and the index N=2 for a non-dispers: ve system. We
assume that the source stress is the Bernoulli one, given by

& = 0.5p,u.’/(1+(p,/p)'?)* (2)

and we also assume that when this stress wave reflects from the target rear surf.ce it continues
to spherically diverge as if centered on an image point at twice the target thickne-= on the impact
axis. Thus the stress amplitude inverts into tension, but otherwise acts as if the wave continued
to move into matter beyond the back of the target. The algebraic sum of this teasile wave and
the remains of the forward-going compressive wave gives the net stress. The forward-going
compressive wave drops its radial stress to zero at the crater surface. Thus the ‘eflected wave
generates the maximum tension as it approaches the crater surface.
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Assume that if this tension exceeds the local target spall (fracture) strength, o, the material
fractures. If this fracture occurs close to the crater bottom, then the total propagation distance

for the pulse was
r=T+ (T-P) = 2T-P (53)

where T is the target thickness and P is the crater depth. Thus we rewrite

(@T-P}r,) = a/a,, or (T-P)r, = (6/0)™ . (54)
But (2T-P)r, = (RT-PY/P)(P/r,) | (55)
Hence 2T/P = 1 + (r/P)a/o)"™ (56)
and /P = (112) (1 + (d,/2P)(a/0)'™) (57

Alternatively, since T/P = (T. /d,)(d,/P) we may rewrite to obtain
T/, = 0.5(P/d,) + 0.25(c/0)™ (58)

This equation thus states that there are two components to the condition causing the spall plane
to coincide with the crater bottom.

Substituting Equations 28 and 52 we obtain
T/d, = (L/B)(4/3)°(p,/P) (P XY {(Coit (0 U/ (1+(P 1P) N ue-t )}
+ (U4 {pH 201+ ) VN (59)
If N=2 the second term becomes
(1/4) (9,260 u, [(1Hp/P)') (60)
Several relevant points can be made:
(1) The equation contains two independent parts.

(2) The equation employs both yield strength (with a 1/3 index) and tensile strength (with
a 172 index, if N=2). We believe this explains the confusion over which strength term

to use for perforations.
(3) The two parts of the equation have different velocity indexes. The first term has an

effective index that starts below 2/3rd but asymptotes to 2/3rd at high speed. The second
term has an index of about 1.0 (if N=2). Thus the combination of terms will appear to
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have a velocity index (M) in the range 2/3 <M < 1.0. Further, this appa-2nt index will
itself not be constant, but will slowly change with impact speed, increasi..g if N<2, and
decreasing if N>2. All previous existing equations (see Section 4.0) fc- the Ballistic
Limit have a velocity index of 23 <M < 1.0.

Figure 5 shows the effects of variations in N on Equation 59 for aluminum on alur:inum impacts.

As will be discussed in Section 3, the previous CTH calculations done for alum:num cratering

in infinite targets demonstrated
in magnitude with approximately an inverse distance squared law.

approximation for aluminum.

that, for distances greater than the crater depth, the stress decayed
Thus M=2 is a good

It should be noted that, as the Ballistic Limit condition is approached, the reflec:2d stress wave
actually passes the crater bottom before the latter has finished full developmen: If the crater
were fully formed before the generation of a spall surface just beyond the crz:2r bottom, the
result would be to leave a thin wall of material at the crater bottom. There -~ould not be a
through-hole. However, because the crater has not completely stopped when t=2 spall occurs,
the continued hoop stretching causes this thin wall to open up into the hole.

The CTH data indicated that the deceleration of the crater bottom was at & pseuc--constant rate.
Hence, the mean speed was almost one-half of the initial speed generated at im _act.

Thus u,, = 0.5 u/(1+p/p,)'") (61)
and the time to form the crater depth is

t= P/, (62)
During this time the stress waves moves at speed c, and propagates a distance

x = ¢, P/, (63)
Thus x/P = 2 ¢, (1+(p/p)' g (64)

For an AV/Al impact, this ratio becomes 4c/u, For a sound speed of 5.1 km/s =ad impact speed
of 10 km/s the ratio is about 2. Thus 2T -P=2P,orT=15P is the maximu= value to allow

the stress to reach the crater before the latter has fully developed.

In the same manner as was done for the sound speed term in the rule for zratering depths
(Equation 28), we introduce a mean correction for high stress (high speeds) tc obtain
xP=2{cxts u/(1Hp/P ) (1 HP /P ) uo (65)

which for high speed impact reduces to
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xP=2s (66)

For aluminum s=1.4, therefore x = 2.8 P. But the required propagation distance for the stress
wave to reflect and reach the crater bottom is x = 2T - P. Thus, T = 1.9 P is the maximum
limiting target thickness (for aluminum) at high impact speed that allows the reflected wave to
pass the crater bottom before the latter has finished its full "normal” (i.e., infinite target)
development. The above quote should be compared to the quote of T = 1.8P to just prevent
perforation, as given by Christiansen (1992b).

For TFE Teflon s = 0.795, therefore x = 1.59 P. But the required propagation distance for the
stress wave to reflect and reach the crater bottom is x = 2T - P. Thus, T = 1.295 P is the
maximum limiting target thickness (for TFE Teflon) at high impact speed that allows the
reflected wave to pass the crater bottom before the latter has finished its full "normal” (i.e.,
infinite target) development.

242 Ultra-Thin Targets (Foils)
For perforations of ultra-thin targets (T<d,/100), we assume a similar logic to that used to
describe crater diameters. Again, we assume that the radially propagating pulse contains
momentum which induces hoop strains and stresses, and that the cratering process stops when
the latter drop to the local yield strength of the target. Thus

Y, = qdt ¢/, (67)

However, there are two major modifications for ultra-thin targets. First, the effect of rapidly
arriving release waves from both the front and rear target free surfaces causes the stress to
decrease with propagation distance very rapidly, such that

q =G (r/n)" (68)
with N >> 2. Second, the effective time-width of the pulse is no longer related to the
reverberation time within the projectile, but instead is given by the reverberation time across the
target, since beyond this time the projectile has effectively punched through the target and there
is no further lateral push. Thus

dt = 2T/c, (69)
Thus from Equations 52, 67, 68 and 69 we obtain

Y. = (p/2)(1/(1Hp,/p)'?) uy’ (2T/c) (et (r/r,)" (70)
which gives

@) = (R, w (140, /)™ (T)Y, )
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or

(@) = (51 = (/PI D X) ™ ugt T Ao )T P ()

Clearly, if N >> 2 this equation collapses toward (r/r,) =10, regardiess of the values of
densities, yield strength, target thickness or impact speed. This latter is an importaat point, since
it accords with experimental observations. Thus the crater diameter in the target asymptotes to
the same size as the projectile. For this case there is no significant differer.ce bet ‘een the crater

»mouth" diameter and the central hole diameter.

The logic for N >> 2 is that, although local momentum must be conservec, muci- of it becomes

entrapped in the surface jets and front and back lips and, therefore, the "effectiv- drive” on the

target wall is strongly reduced. Also, very narrow pulses undergo rapid attenuz:ion due to the

release waves which overtake the shock front.

2.43 The Intermediate Case

Most investigators have concentrated on either the Ballistic Limit case or the thin foil case.
However, Horz (1992) has studied the details of perforation for the intermediate case, by tracking
the hole size versus target thickness for otherwise constant conditions. We here make an initial
attempt to predict the overall behavior as a function of target thickness.

Starting with Equation 72, and based on the above arguments for rapid:ty of -.ress relief, we
assume that the index N is itself a function of T/d,. A simple possibility is the function

N=2(1+md/T) (73)

where m is a multiplier whose value is chosen so as to make Equation 72 ideatical to POD's
cratering equation, Equation 21, when T = 2/3 d,. This latter logic is based on the fact that the
crater diameter is almost identical to the infinite-target case for this condition. Thus N

asymptotes to 2 when T >> d, (the infinite target case), and to 2md /T for T << d, for ultra-thin
foils. Further, dividing Equation 72 by Equation 21 we obtain
(dep)N-z.s = 3T/2d, (74)
which can equate if N = 2.5 when T =2/3 4,
Thus we chose m = 1/6 = 0.16667. Hence
(75)

N=2(1+0.1667 &/T)

we obtain 1/(N+1) = 0.2857 for Equation 72, which is the same index used

Hence for T=2/3 d,
in Equation 21. Thus for T22/3 d, we use Equation 21, while for T<2/3 d, we use Equation 72.

33

e e kg

Rl

i

[K{ORNaE

Hi-F e

[IBTEIRRENTS

AT il



Figure 6 plots Equation 72, using the index in Equation 75, for (d/d,) versus (d/T). Also shown
on this plot are the experimental data from Harz for (dy/d,)). We see that the trends are very
similar. POD does not claim that the final equation has been derived; rather we believe that the

form of the behavior has been identified.

Applying the logic of Equation 75 within Equation 72 also leads to the following behavior as
T/d,=0.0

(. - d)/d, = (3.0 T/d,) (In (A) - In (T/d) (76)
where A= 2(p/p) (P/Y) u’ / (1 + (pJp)'?) (77

This suggests that the hole closes down to the projectile size in a roughly linear fashion as target
thickness is reduced for very thin targets. However, the logarithmic term for (T/d,) produces a
net "effective” index which is somewhat less than unity, especially as T/d, increases. For
example, for 0.005<T/d,<0.01 the apparent index is about 0.894, while for 1.0<T/d,<2.0 the
apparent index is about 0.776. These index quotes should be compared to values of about 2/3
given by Sawle (1969), Maiden (1963) and Brown (1970), and the quote of 0.895 given by
Schonberg (1988). The logarithmic behavior for the term A demonstrates a very weak
dependence on material properties and impact speed, in accordance with observations.

Figure 7 shows the effects of variations in N on Equation 59 for aluminum on TFE Teflon
impacts. The CTH calculations done for TFE Teflon cratering in infinite targets demonstrated
that, for distances greater than the crater depth, the stress decay roughly obeys a 1/r law near the
impact point but steadily asymptotes towards a 1/r** law with increasing distance. Thus N=2.4
is a good approximation for TFE Teflon.

Starting with Equation 72, we assume that the index N is itself a function of T/, As for
aluminum a simple possibility is the function

N=24(1+md/m (78)
which asymptotes to 2.4 when T >> d, (the infinite target case), and to 2.4md /T for T << d, for
ultra-thin foils. The value of m is chosen so as to make Equation 72 identical to Equation 21
when T = 2/3 d,. Thus we chose m = 1/36 = 0.0278. Hence

N=24(1+00278 d/T) (79)

Applying the logic of Equation 78 within Equation 72 also leads to the following behavior as
T/d,=0.0

(d - d)/d, = (15.0 T/d,) ( In (A) - In(T/d,)) (80)
where A= 2(p/p) (P/Y) u? / (1 + (p/p)'?) (81)
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2.4.4 Perforation Supralinearity

Experimentally observed supralinearity for aluminum targets was explained dy invoking the
"Petch Law" (Petch, 1953) which describes the strength of a ductile materia. versus its mean
grain size. POD anticipates the size effect to also apply to perforations, and to ause the critical
target thickness for ballistic perforation to scale with projectile diameter in a s:milar manner as
does the crater diameter. Thus the above equations describing the Ballistic L:mit, etc., should
be "downgraded” for very small projectiles, by a factor F, as described in Sec::on 2.3.9.

25 Oblique Impacts: Summary of Typical Behavior

All of the above discussions referred to impacts normal to the target surface. :he following is
a brief description of typical responses for oblique impacts.

Defining the angle 6 as that between the projectile motion and the normal to ti. target surface,
it has been observed in experiments that for 8 < 60 degrees the major cffect :: for the craters
to develop as if the impact speed were given by u,cos6. Therefore, all of the sxisting scaling
laws are adjusted for oblique impacts by adding in a cos correction. Thus a: the component
of the impact speed normal to the surface decreases so the crater also decreases -1 both diameter
and depth. Further, the crater aspect ratio changes very little, and the craters ar. essentially still

axially symmetric.

However, it has also been observed that for 6 > 60 degrees, the craters start ..» become more
asymmetric. The "downstream" portion tends to become elongated. At this stag: portions of the
projectile also start to ricochet and material is ejected downstream at a sraall anzle to the target
surface (typically within about 15 degrees). Other phenomena include obsc:vations of the
projectile itself shearing, such that the upper portion (away from the impact sur:ace) can detach
itself and impact the target downstream as a separate impactor(s).

25.1 ldealized Theory

The general response for oblique impacts can be understood if we stast with an "idealized"
condition; namely, the assumption that the interface between the projectile and :he target has a
zero coefficient of friction. We also ignore the fact that the projectile penet: utes (i.e.,"digs"
itself) into the target. Under these circumstances, an oblique impact will transr.:it to the target
only the component of momentum and energy that is along the target surfac: normal. The
remaining momentum and energy reside within the projectile as components para::el to the target
surface (we call these latter components the orthogonal ones). Since hypervzlocity impacts
produce an effective coefficient of restitution of zero (i.e., there is negligible bc:nce) there are
also no components remaining along the target surface normal. Thus the project:le ricochets by
skimming along the target surface in the downstream direction.
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The above logic implies that the target response will always be that for the normal component
of the impact speed only, and also implies that the projectile always ricochets across the target

surface.

Reality, of course, is a little different. Because the projectile impact immediately causes jetting
and the onset of lip formation outboard of the projectile diameter, the ability of the projectile to
simply "skim" across the target surface is suppressed. Consequently, the orthogonal components
of momentum and energy parallel to the target surface become dissipated by providing a degree
of asymmetry in the crater diameter. This asymmetry is quite small until the obliquity increases
to about 60 degrees. The influence of the orthogonal momentum and energy on the crater depth
is essentially zero.

Following this logic, POD's cratering Equations 21 and 28 become, respectively,
(0Jd)=1.0857(p,/p )" > (p /Y )" (/e ) > (uycos0) /(1 + (p,/p)'")* (82)

DI ~(LAYA/3)2(p /0B ) cursuscosd-u (1HP P ) Nucord-n)l*  (83)

whereas POD's perforation Equations 59, 72 and 77 become, respectively,

T/d, = (1/8)(4/3)2(p,/P )" (P /¥ ) *{(curts(uycosd o )/(1+(p /P ) *))(vyc030 -, )} °

+ (U4){p,(nyc0s0)*/(20,(1+(p /P YN ™ (84)
(Y =(r/r)=(0,/P ) T (X )™ (1yc080) (2 T/d) /(1 +(p /)Y (85)
A= 2 (p/p) (P/Y) (uecos) / (1 + (p/P)'"?) (86)

Figure 8 shows a normalized plot of how Equations 82, 83, and 84 vary with the angle of
incidence (0). The equations are normalized by Equations 21, 28, and 59, respectively. Note
that the angle of incidence must exceed 30 degrees to get more than a 10% change in T/d,, and
must exceed 35 degrees to get more than a 10% change in d/d, or P/d,. In fact, to get more than
a 20% change (the limit of many experimental measurements), the angle of incidence must
exceed 40 degrees and 48 degrees, respectively. Also, note that, due to the two components of
Equation 59, for angles above 80 degrees, T/d, varies linearly.

2.5.2 The Ricochet Case

We define ricochet as being the case where the projectile, in whole or in part, escapes from the
impact crater before the crater lips are formed. For a hypervelocity impact, where both projectile
and target behave as fluids, a simple condition for guaranteeing that the whole of the projectile
can ricochet across the target surface is that the orthogonal component of the projectile velocity
be greater than the speed of the corresponding target surface disturbance. The latter is the sound
speed in the target, adjusted for the high pressure impact state. Thus we require
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u,Sind 2 co + 8 UcosB/(1Hp/P)'"?) tY)

where s is the Hugoniot term relating shock speed to particle speed, anc c, is -he target low
stress bulk sound speed. Rewriting

sin@2c,fu, + s cos®/(1Hp/p,)"?) (88)

This equation predicts that the critical angle, 6, which ensures total ricochet monotonically
decreases from 90° at u, < Co toward 35° for very high impact speed, for :luminum into
aluminum. In the impact speed range of 6 to 10 km/s the angle changes from al-out 79° to 60°.

A second condition to consider is the limiting condition which ensures that :he top of the
projectile just escapes the crater lip formation. This is the limiting case for p rtial projectile
ricochet. This case is defined purely by the geometry of the impact such that

tand= r,/d, = 1/2 (d/d) (89)

Figure 9 plots 2tan® versus d./d, at various velocities. The points where the 2t:10 line crosses
any given d/d, line is the limiting angle for partial projectile ricochet for tha: velocity. The
corresponding condition for the mid-point of the projectile to clear the crater is g:ven by plotting
tan@ versus d/d, instead.

A final condition to consider is that which ensures the materials behave as fiuids. Thus we
require

1,c0S0 2 U (90)

where u_, (defined before) is the minimum speed necessary to ensure Bemoull. flow behavior.
For impact speeds below this value the response becomes elastic-plastic.

These three conditions thus bound the ricochet phenomenon for the case of Ber::oulli flow. For
impacts which are within the Bemoulli flow condition but outside of boith the ricochet
boundaries, ejection of crater and projectile material can still occur, but this :s not a ricochet
condition.

Figure 10 shows a composite of Equations 88, 89 and 90. This figure also sh-:ws the two loci
for top and mid-point of the projectile using Equation 89, using d./d, as a furstion of 6. We
see that for impact speeds in the range 2 to 6 km/s there is a broad peak in ar:gle of incidence
necessary to guarantee projectile ricocheting with Bemoulli flow logic. It's in:ieresting to note
that the limiting angle for partial ricochet is in the range of 65 to 60 degrees :respectively, for
the Equation 89 criteria used) as is normally seen in experiments.
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Also plotted is the incipient vapor locus for AVAI (ie., u,cosd® = 10.2 km/s). We see that only
for very high impact speeds above about 30 km/s does this locus catch the ricochet loci. Above

these speeds the ricochet is of an expanding vapor cloud.

Christiansen (1992c) has also studied ricocheting effects for AI/Al. For thick targets he derived
a locus of critical angle versus impact speed. The logic used was that if the stress wave in the
projectile travelled from the impact point to the projectile rear surface and then back to the mid-
point before the mid-point itself reached the target surface, then the upper portion of the projectile
can suffer breakup and cause downstream multiple cratering. Thus defining the mean projectile
wave speed as c, (shock out, rarefaction back), the projectile radius as I, and the normal

component of impact speed as u,cosd (with 6 the obliquity) we have
3r,/c, <r/u,cosd or cosb<c,f3u, (91)

This locus is also shown in Figure 10. We see that it is close to the loci given by POD.

38



3.0 CTH HYDRODYNAMIC CALCULATIONS
3.1 Cratering in Aluminum

The CTH code from Sandia National Laboratory, Albuquerque (SNLA), ha  been used to
investigate the cratering responses of an aluminum target. Parameters variec have included
impact velocity, projectile density, and target and projectile yield strengths. In al! cases the target
was sufficiently thick to behave as an infinite body. For all cases the projectile vas a sphere of
diameter 100 microns. The resulting data have been mapped and compared to .quations of the
form

P/d, = constant (p/p)* (//Y)" u,° (92)
and  d/d, = constant {p/n)/(1 +o/p)"™ P /VD® wE (c/e) - 93)

Figures 11 to 20 show the data in log-log form. It is immediately clear that the -ndexes are not
constants and that they vary with the impact speed. This effect is strongest at tze lowest speed
of 1 km/s (which normally would not be considered as hypervelocity) anc slow!:: asymptotes to
steadier values at the higher impact speeds.

To date, the best overall fits are given by:
for P/d,: constant = 0.0725, A = 0.60, B = 0.263, C = 0.664

(Note that these indexes are similar to those in Equation 28, except for the densit. index, and the
leading constant).

for d/d,: constant = 0.468, A = 0.33, B = 0.258, C = 0.575, D = indztermi::ate (not tested)

These fits are primarily for data above 5 km/s impact speeds, since the low speed :mpacts clearly
are near the limit of applicability of Bernoulli logic and expectations. It is gratifying to see that
the responses are similar to the expectations.

Of particular interest are the plots of (P/d,) and (d/d,) versus projectile deisity and speed
(Figures 15 and 16). Note how for the crater diameters the plots "curve ove:" as projectile
density increases. This is the form predicted by Equations 14 and 21. For the pesetration depths
the plots follow a more direct power law, which is as predicted by Equation 28. Figures 19 and
20 show the ratios P/d,. From Equations 21 and 28 we obtain a ratio which :s complex and
contains low power indexes for density, yield strength and impact speed. For vary high impact
speed, this asymptotic ratio gives the following equation

P/dc =>0.253(p P/p')O.M%(p‘/Y .)0.0476(0 ,/C ')0.283751/3“00.095(1 +(p I/p')m)o.sm/(l +(pr;pp)m)s : (94)
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Specifically, the ratio P/d, then becomes a positive function of (p/p) and an inverse function of
Y, The plots show a similar behavior. We thus conclude that much of the basics of the scaling
laws for either crater diameter or crater depth are indeed contained in Equations 21 and 28,
although we cannot yet vouch for the exact values of the power indexes.

Figures 21 to 26 show some of the geometries of the crater for the 10 km/s impact velocity case.
The dark spots on the impact axis are Lagrangian points, as described below. These figures are
split, with the right side showing geometry only and the left side giving stress contours as per
the bar legend to the right of each figure.

Scrutiny of the CTH runs reveals many interesting facts. It is observed that the maximum depth
of the crater occurs (in Figure 24) before the maximum crater diameter has formed (in Figure 26),
and that the ratio depth/diameter is not 0.5 in general (i.e, the crater is generally not
hemispherical). Various tracer points (Lagrangian points) were placed along the impact axis.
For these points the time histories of pressure, velocity and position were obtained. Figures 27
to 32 show such data for the case of a 100 micron Al ball hitting an Al target at 10 km/s. Both
materials were Al 6061-T6 with a yield strength of 2.7 kbars. The Lagrangian points were L1
through L6 at initial depths of 0.0 (surface), 120 microns, 240 microns, 360 microns, 480 microns
and 600 microns, respectively. Of these, the points L1 to L3 were within the finally formed
crater which developed a maximum depth of 300 microns, giving P/d, = 3.0. The final crater
diameter was 500 microns. Thus d/d, = 5.0, and P/d, = 0.6. In all cases the definitions of depth
and diameter are relative to the initial target surface.

The fact that these three L points remain on the axis and form part of the crater itself
demonstrates that the material on the impact axis does not flow out of the crater but merely
moves into the target. Only target material off the axis takes part in the circumferential rotational
flow, with that nearest the free surface affected the most.

Immediately upon impact the peak stress is about 900 kbars. This is lower than the expected 1-D
stress of 1.63 Mbars (perhaps owing to the artificial viscosity in the code?) but is considerably
higher than the corresponding Bernoulli stress of 337.5 kbars. This peak stress rapidly drops
through the Bernoulli value to a very low stress of the order of the plastic yield value, whereupon
the stress drops much more slowly. Some residual stress reverberation ringing can be seen on
the plots. The initial shock wave speed is 12 km/s at the 1-D stress, while the release wave
speeds are even faster. Thus the 1-D stress lasts for less than 10 ns and immediately collapses
toward the Bernoulli stress. The peak stress then propagates at a wave speed of near 6 km/s,
which is close to the dilatational speed for aluminum, and decays in value with distance. This
decay roughly obeys a 1/r law near the impact point but steadily asymptotes towards a 1/7 law
with increasing distance. Thus at early time the stress is obeying the "energy” logic, while at
later time it obeys the "momentum” logic. The previous suggestion of mixed non-steady power
indexes indeed applies.

The induced compressive strain during the 1-D condition is given by (WW), where u is the
induced particle speed change and W is the shock wave speed. Thus for a speed u of 5 km/s and
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a W of 12 km/s the strain is 0.417 and the density has increased by the ratio W, :W-u) which is
17! Thus the concept of treating the materials as "incompressible" is clearly not correct for this
state. Thus the conventional Bernoulli logic applies only after the shock move: away from the
impact site.

Afier the stress peak passes a given point a stress gradient exists between this pulca and the crater
surface. This gradient decelerates the surface and eventually brings it to rest. T:is deceleration

is given by
dw/dt = - (1/p) dP/dx (95)

where dP/dx is the stress gradient. If this gradient stayed constant the crater surface motion
would become a simple quadratic function versus time. However, the grzdient - aries with time
and position giving a more complex solution.

The plots indicate a very small elastic recovery. The stress gradient appears t: be attached to
the rear of the shock pulse at a value of about the target yield strength.

The CTH calculations demonstrate that the yield strength of the target is indeec a major player
in the crater formation. Further, a large region (extending to beyond twice the crater depth) of
the target is put into permanent plastic strain. This effect is most clearly seen for the deepest
Lagrangian points (Figures 31 and 32) where it is seen that the material is ultimately left with
a permanent compression of about the yield stress. This is the response expected for a material
which has been subjected to a pseudo 1-D stress wave which exceeds the Hugon:ot Elastic Limit
(HEL). Note that HEL = Y(1-v)/(1-2v) where v is the Poisson ratio. For aluminum v = 0.33,
thus HEL = 1.97Y (i.e., 5.32 kbars for Al 6061-T6). Upon shocking the material returns to a
state of zero stress in the direction of the stress wave but has lateral compressive stresses equal
to the yield stress. Thus the pressure becomes 2Y/3. At these large radii the hc-.p stress is very
small and provides only a small correction.

A considerable amount of strain energy is stored within this plastic region beyor.l the crater, and
energy also exists in the propagating elastic wave beyond the plastic region. Tkh:s highlights the
problem of trying to equate the impactor kinetic energy with the energy neceszary to excavate
the crater, as mentioned before.

3.2 Cratering in TFE Teflon

As was described above for cratering in aluminum, the CTH code has been us=d to investigate
the cratering responses of a Teflon (TFE) target. Parameters varied have :ncluded impact
velocity, projectile density, and target yield strength. In all cases the target was =ufficiently thick
to behave as an infinite body. For all cases the projectile was an aluminum sphere of diameter
100 microns. As with the aluminum runs, calculations were done at 1, 5, 10 a=d 15 km/s, with
yield values of 0.1Y,, Y,, and 10Y, (where Y, is the normal value for the Teflo- target), and for
densities of p,/3, p,, and 3p, (where p, is the normal value of the aluminum f--ojectile).
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The properties used for Teflon were:

density = 2.17 g/cm’®, bulk sound speed = 1.29 km/s, yield strength = 300 bars, s = 0.795,
Poisson ratio = 0.433, and spall strength = 200 bars. The melt temperature is 327°C and melt
energy is 82 cal/g. These are POD's "best guesses” for the material parameters, since the
literature (Harper, 1992; Moses, 1978; Dean, 1992; Rice, 1980) reveals some inconsistences
(some references even fail to distinguish between TFE and FEP Teflon, which have somewhat

different properties).

As with aluminum, the resulting data have been mapped and compared to equations of the form
P/d, = constant (p/p)* (p/Y)" u,° (96)

and  d/d, = constant {p/p)/(1 +(p 00k (/Y)* S (c/c) o7

Figures 33 to 42 show the data in log-log form. It is immediately clear that the indexes are not
constants and that they vary with the impact speed, as occurred for aluminum. This effect is
strongest at the lowest speed of 1 km/s (which normally would not be considered as
hypervelocity) and slowly asymptotes to steadier values at the higher impact speeds.

To date, the best overall fits for Teflon TFE are given by:
for P/d,: constant = 0.68, A = 0.49, B = 0.23, C = 0.475

(Note that these indexes are similar to those in Equation 28, except for the density index, and the
leading constant).

for dJjd,;: constant = 0.18, A = 0333, B = 0.20, C = 0.58, D = 0.333
These fits are primarily for data above S km/s impact speeds.

Of particular interest are the plots of (P/d,) and (d/d,) versus projectile density and speed
(Figures 37 and 38). Note how for the crater diameters the plots "curve over" as projectile
density increases. This is the form predicted by Equation 21. For the penetration depths the
plots follow a more direct power law, which is as predicted by Equation 28. Figures 41 and 42

show the ratios P/d..

Figures 43 to 51 show some of the geometries of the crater for the 10 km/s impact velocity case.
The dark spots on the impact axis are Lagrangian points, as described below. Note the dynamic
variations in the shape of the crater and the repeated sequence of lip spallation. The final crater
shape has a surface spall region surrounding the crater proper. This is very similar to the features
observed experimentally, as shown in Figure 4.
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A problem was met when trying to determine the crater diameters from the CTE calculations.
For some of the larger craters the geometry was not smooth, with the crater outer region
displaying re-entrant shapes due to lip spallation and surface fractures. Consequer:ly, more than
one possible value could be identified for the diameter measured in the initial :arget surface
plane. This effect is indicated on Figure 52 as an error bar in the values of (d/d,). This problem
of measurement also occurred with the experimental data, as discussed in Sectio:: 5.2 below.

Scrutiny of the CTH runs reveals many interesting facts. It is observed that, as for the aluminum
case, the maximum depth of the crater occurs (in Figure 49) before the maximum cvater diameter
has formed (in Figure 51), and that the ratio depth/diameter is not 0.5 in general {ie., the crater
is generally not hemispherical, and the CTH runs sometimes indicated a "centrzl 'pip™ at the
bottom of the craters with the deepest part of the crater slightly off the impact axis). Various
tracer points (Lagrangian points) were placed along the impact axis. For these points the time
histories of pressure, velocity and position were obtained. Figures 53 to 59 shov. such data for
the case of a 100 micron Al ball hitting a Teflon target at 10 km/s. The aluminur: was 6061-T6
with density 2.7 g/cm’ and yield strength of 2.7 kbars, while the Teflon had the normal values
quoted above. The Lagrangian points were L1 through L7 at initial depths of 0.0 {:mpact surface
of the projectile), 0.0 (surface of the target), 110 microns, 220 microns, 340 micror:s, 460 microns
and 570 microns, respectively. Of these, the points L1 to L6 were within the finally formed
crater which developed a maximum depth of 500 microns, giving P/d, = 5.0. The final crater
diameter was 720 microns. Thus d/d, =72, and P/d, = 0.694. In all cases the definitions of
depth and diameter are relative to the initial target surface.

Immediately upon impact the peak stress is about 550 kbars. This is lower than th= expected 1-D
stress of 900 kbars (perhaps owing to the artificial viscosity in the code?) but :is considerably
higher than the corresponding Bernoulli stress of 302 kbars. This peak stress rapidly drops
through the Bernoulli value to a very low stress of the order of the plastic yield vaiue, whereupon
the stress drops much more slowly. Some residual stress reverberation ringing can be seen on
the plots. The initial shock wave speeds are about 7.5 km/s in the Teflon and about 10 km/s in
the aluminum at the 1-D stress, while the release wave speeds are even faster. Thus the 1-D
stress lasts for less than 13 ns and immediately collapses toward the Bernoulli siress. The peak
stress then propagates at a wave speed of from 3.7 km/s at 200 microns depth 0 1.47 km/s at
a depth of 600 microns, which is asymptoting to the dilatational speed for Teflo=, and decays in
value with distance. This decay roughly obeys a 1/r law near the impact pc:nt but steadily
asymptotes towards a 1/r** law with increasing distance.

The CTH plots reveal that a pulse is propagated away from the impact site. Th:z is clearly seen
as a "loop” of constant stress in Figures 44 through 46. The existence of such 1 pulse was the

fundamental concept in POD's derivation of its scaling laws.
The induced compressive strain during the 1-D condition is given by (wW). where u is the

induced particle speed change and W is the shock wave speed. Thus for a spec- u of about 6.4
km/s and a W of 7.5 km/s the strain is 0.853 and the density has increased by th:2 ratio W/(W-u)
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which is 6.8. The plots indicate a very small elastic recovery. A stress gradient is attached to
the rear of the shock pulse at a value of about the target yield strength.

As with the aluminum runs the CTH calculations demonstrate that the yield strength of the target
is'indeed a major player in the crater formation. Further, a large region (extending to beyond
twice the crater depth) of the target is put into permanent plastic strain. This effect is most
clearly seen for the deepest Lagrangian points (Figures 58 and 59) where it is seen that the
material is ultimately left with & permanent compression of about the yield stress. This is the
response expected for a material which has been subjected to a pseudo 1-D stress wave which
exceeds the Hugoniot Elastic Limit (HEL). Note that HEL = Y(1-v)/1-2v) where v is the
Poisson ratio. For Teflon v = 0.433, thus HEL = 4.23Y (i.e, 1.27 kbars for Teflon TFE). Upon
shocking, the material returns to a state of zero stress in the direction of the stress wave but has
lateral compressive stresses equal to the yield stress. Thus the pressure becomes 2Y/3. At these
large radii the hoop stress is very small and provides only a small correction.

A considerable amount of strain energy is stored within this plastic region beyond the crater, and
energy also exists in the propagating elastic wave beyond the plastic region. As stated above,

this highlights the problem of trying to equate the impactor kinetic energy with the energy
necessary to excavate the crater.

33 Perforations in Aluminum

CTH has been used to investigate the perforation responses of an aluminum 6061-T6 target.
Parameters varied have included impact velocity and the target thickness. For all cases the
projectile was a sphere of diameter 100 microns. As with the aluminum cratering runs,
calculations were done at 1, 5, 10 and 15 km/s, with the normal yield value of Y, and normal
densities of p, and p,.

The properties used for Al 6061-T6 were:

density = 2.7 g/cm®, bulk sound speed = 5.1 km/s, yield strength = 2.7 kbars, s = 1.4, Poisson
ratio = 0.33, spall strength = 3.1 kbars.

The resulting data have been mapped and compared to equations of the form
T/d, = const (p,/p)* (p/Y)® u,° (98)
and to POD's Equation 59.

Figures 60 and 61 show the data in both linear and log-log form. It is immediately clear that the
velocity index is not constant and slowly varies with the impact speed. This variation is strongest
at the highest speeds above 10 km/s.

To date, the best overall fits to Equation 98 for aluminum are given by:
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constant = 0.133, A = 1/3, B = 1/3, C = 0.75

The direct application of Equation 59 is shown in Figures 60 and 61. The res;.onses are simila:
to the expectations. However, locating the Ballistic Limit threshold requires :aany calculations
(e.g., at least two for a given impact speed, one above and one below the th: sshold). For this
reason POD has yet to fully investigate the influence of density, yield strength ..ad spall strength.
However, we anticipate responses similar to those observed for cratering.

Figures 62 to 67 show some of the geometries of the crater for the 10 knv/s imp.act velocity case,
for a case of "not quite” causing perforation. The dark spots on the impact axis are Lagrangian
points, as described below. These figures are split, with the right side showirg geometry only
and the left side giving stress contours as per the bar legend to the right of eact: figure. Note the
dynamic variations in the shape of the crater and the repeated sequence of rear :irface spallation.

The CTH runs reveal many interesting facts. For the non-perforation case (90 micron thick
target) it is observed that the maximum depth of the crater occurs (in Figurs 65) before the
maximum crater diameter has formed, and that the ratio depth/diameter is not 0.5 in general (ie.,
the crater is generally not hemispherical). Various tracer points (Lagrangian pc:ats) were placed
along the impact axis. For these points the time histories of pressure, velocity &:d position were
obtained. Figures 68 to 74 show such data for the case of a 100 micren Al Lall hitting a 500
micron thick Al target at 10 km/s. The Lagrangian points were L1 through L7 at initial depths
of 0.0 (impact surface of the projectile), 0.0 (surface of the target), 110 microzs, 220 microns,
340 microns, 460 microns and 570 microns, respectively. Of these, the point= L1 to LS were
within the finally formed crater which developed a maximum depth of 350 mic: ons, giving P/d,
= 3.5. Note that this depth is larger than the corresponding thick targe: case, vhere the depth
was 300 microns. Also note the thin wall remaining at the bottom of the crater. The final crater
diameter was 500 microns, which is identical to the thick target case. Thus d/c_= 5.0, and P/d,
=0.70. In all cases the definitions of depth and diameter are relative to the initiz; target surface.

Immediately upon impact the peak stress is about 900 kbars. This is lower than e expected 1-D
stress of 1.63 Mbars (perhaps owing to the artificial viscosity in the code?) bu: is considerably
higher than the corresponding Bernoulli stress of 337.5 kbars. This peak stress rapidly drops
through the Bernoulli value to a very low stress of the order of the plastic yield vzlue, whereupon
the stress drops much more slowly. Some residual stress reverberation ringing can be seen on
the plots. The initial shock wave speed is about 12 km/s in the aluminum at the :-D stress, while
the release wave speeds are even faster. Thus the 1-D stress lasts for less than 10 ns and
immediately collapses toward the Bemoulli stress. The peak stress then propugates at a wave
speed of 6 km/s which is asymptoting to the dilatational speed for aluminum, anc decays in value
with distance. This decay roughly obeys a 1/r law near the impact point but stezdily asymptotes
towards a 1/r* law with increasing distance.

The induced compressive strain during the 1-D condition is given by (W/W), where u is the
induced particle speed change and W is the shock wave speed. Thus for a spe=d u of about 5
km/s and a W of 12 km/s, the strain is 0.417 and the density has increased by th« ratio W/(W-u),
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which is 1.7. Thus the concept of treating the materials as "incompressible” is clearly not correct
for this state. Thus the conventional Bernoulli logic applies only after the shock moves away
from the impact site.

The perforation case (400 micron thick target) is shown in Figures 75 to 80 (geometry versus
time), and in Figures 81 to 89 (Lagrangian tracer points). The figures clearly show that the crater
mouth forms identically to that for the case of no perforation. The major difference is the deeper
spall leading to crater break through. Note how the bottom of the crater has a conical shape.
These effects have been observed experimentally for impacts which just cause perforations.

3.4 Perforations in TFE Teflon

CTH has also been used to investigate the perforation responses of a TFE Teflon target.
Parameters varied have included impact velocity and the target thickness. For all cases the
projectile was a sphere of diameter 100 microns. As with the Teflon cratering runs, calculations
were done at 1, 5, 10 and 15 km/s, with the normal yield value of Y, and normal density of p,
and p, The properties used for Al 6061-T6 and TFE Teflon were the same as for the other

calculations.
The resulting data have been mapped and compared to equations of the form

T/d, = const (p/p)* (P/Y)" u° 99)
and to POD's Equation 59.

The direct applications of Equation 59, together with the CTH data in both linear and log-log
form are shown in Figures 90, 91 and 92. Itis immediately clear that the velocity index is not
constant and slowly varies with the impact speed. This variation is strongest at the highest
speeds above 10 km/s.

To date, the best overall fits to Equation 99 for TFE Teflon are given by:
constant = 0.25, A = 1/3, B = 1/3,C=0.71

Figure 90 shows a comparison of the CTH results against POD's Equation 59 for N = 2. As
expected and explained above, the equation overpredicts the CTH data for this case. The
explanation above stated that N = 2 4 should be the correct case for TFE Teflon and Figures 91
and 92 confirm this. Locating the Ballistic Limit threshold requires many calculations (e.g., at
least two for a given impact speed, one above and one below the threshold), consequently POD
has yet to fully investigate the influence of density, yield strength and spall strength. However,
we anticipate responses similar to those observed for cratering.

For the non-perforation case it is again observed that the maximum depth of the crater occurs
before the maximum crater diameter has formed, that the ratio depth/diameter is not 0.5 in
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general, and that in general the crater depth is larger than the corresponding ::ick target case.
In addition, we observed dynamic variations in the shape of the crater and re-2ated sequences
of lip spallation, and the CTH runs sometimes indicated a "central 'pip™ at tl.¢ bottom of the
craters with the deepest part of the crater slightly off the impact axis. The final crater shape has
a surface spall region surrounding the crater proper. This is very similar to the fcatures observed
experimentally, as shown in Figure 4. In all cases the definitions of cepth £:1d diameter are
relative to the initial target surface.

Figures 93 to 101 show some of the geometries for the 10 km/s impact velo.:ty case for the
perforation case (700 micron thick target). The dark spots on the impact axis are Lagrangian
points. Note the dynamic variations in the shape of the crater and the repeated =2quence of rear
surface spallation. Also note the odd crater shape with local radial cracks, very similar to those
observed by Horz (1992) and shown in Figure 4.

The crater mouth forms identically to that for the case of no perforation. The :::ajor difference
is the deeper spall leading to crater break through. Note how the bottom of :he crater has a
conical shape. These effects have been observed experimentally for imoacts - hich just cause

perforations.

Various tracer points (Lagrangian points) were placed along the impact axis. :or these points
the time histories of pressure, velocity and position were obtained. The Lagrang:an points were
L1 through L9 at initial depths of 0.0 (impact surface of the projectile), 0.0 {surface of the
target), 110 microns, 220 microns, 340 microns, 460 microns, 570 microns, 680 :=icrons and 800
microns, respectively. Figures 102 to 108 show the data for Lagrangian pointc L1 through L7
for the case of a 100 micron Al ball hitting a 700 micron thick TFE Teflon ta:get at 10 km/s.
Note from these Lagrangian points how slowly the perforation occurs with a very long-lived
gradual downstream motion of the crater bottom.

3.5 Oblique Impacts into Aluminum

The CTH code has been used to investigate the oblique impact responses of an :.uminum 6061-
Té6 target. Because such calculations are 3-D (and hence require much compu:zr memory and
run time) the only parameter varied was the angle of incidence, which was set at 70° and 50°.
The projectile was a sphere of diameter 0.5 cm, and the calculation was done at = km/s, with the
normal properties used for Al 6061-T6.

Figures 109 to 115 show the 70° impact as an isometric view. The projectile approaches the
target from the top left, proceeds to cause a crater, and then ricochets off to the right. Figures
116 to 122 show the same impact but in cross-section in the plane of the impac:-or (i.e., a view
"sideways" at the collision), while Figure 123 shows the orthogonal cro:s-sect:.:n (i.e., a view
from "behind" the projectile).

The figures clearly show how the crater develops a significant asymmetry, ezoecially on the
downstream side. The projectile is seen to "ride up" the extended cratzr wal: and to slowly
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stretch and fragment. For this impact, POD's Equations 87 and 88 predict that the upper portion
of the projectile will suffer a partial ricochet. The figures clearly show that, as predicted, the top
of the projectile never actually enters the crater, but instead passes over the crater lips to impact
the target further downstream. Note also how this portion of the projectile essentially moves

parallel to the target surface.

From the CTH data, the maximum crater depth is 0.42 cm. ThusP/d, = 0.8. The crater diameter
measured in the orthogonal cross-section is d, = 1.0 cm. Thus d/d, = 2.0. For an impact speed
of 5 km/s at 70° angle of incidence the component normal to the surface is 1.71 km/s. For this
speed POD's Equations 21 and 28 give d/d, = 2.0 and P/d, = 1.0, respectively. (Note that
although POD's prediction for P is about 20% too high, no direct CTH calculations were done
for an impact speed of 1.71 km/s normal to the surface. Thus the "exact” value expected is

slightly uncertain).

For the 50° impact the prediction given before (Figure 10) suggests that the projectile should be
on the limit of ricocheting. The CTH results confirm this. Figures 124 through 128 show a
"side" view of the impact, and Figure 129 shows the "rear” view. It is seen that the top of the
projectile initially just escapes its own crater at early time. However, the crater is still growing
and succeeds in just catching the projectile fragments at later time, whereafter the projectile never
subsequently escapes its own crater, although there is a lot of lip formation and ejecta. The final
lateral crater diameter is 1.44 cm (d./d, = 2.88) while the depth is 0.634 cm (P/d, = 1.27). These
values should be compared to 2.9 and 1.5, respectively, which are the expectations for this case
(normal impact speed component of 3.21 km/s). Thus the CTH calculations confirm that oblique
cratering does obey the "cosine law” for depth of penetration and orthogonal crater diameter.

An important point to note is that these particular CTH calculations were done for a much larger
projectile (0.5 cm) than were all the previous calculations (100 microns) for normal impacts. Yet
the scaling rules still apply! This demonstrates that (as POD previously stated) the
"supralinearity” effect is not associated with hydrodynamics per se. However, this fact also
suggests that the effect is not associated with changes in strain rates either. POD therefore
believes that the Petch Law is still the most probable explanation for supralinearity.

An issue raised in Section 1.4 concerned the possibility that the cosine law breaks down for very
high speed impacts, since the latter might be dominated by energy rather than momentum.
However, none of POD's analyses invoke energy as a criterion for cratering. Based on this fact,
POD presently believes that the cosine law continues to apply even for the highest impact speeds.
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4.0 COMPARISONS WITH OTHER SCALING LAWS
4.1 Cratering in Aluminum

A large number of existing scaling laws describing either penetration depth and/c - crater diameter
have been identified and compared. Christiansen (1992a,b) has given quotes fo: the Cour-Palais
equations. Schonberg (1989) has also listed many of these laws. For convenisnce we include
the equations from his report, together with his list of references, in Appencix B (Note that
Schonberg's data accidently misquotes the Cour-Palais equations, giving a velozity index of 4/3
instead of 2/3. For this reason POD uses the Christiansen quotes only). Figu:s 130 compares
the results of POD's Equations 21 and 28 with CTH calculations. We see tha: for a projectile
and target both of Al 6061-T6 the equations give good fits to the CTH pradicticzs. Figures 131
to 141 show comparisons between POD's equations and these other scaling la-'s for the same
impact conditions.

Of all the existing equations the one by Sedgwick et al. (1978) seems to be ti:2 closest to the
CTH data for both penetration depth and crater diameter. The good agreement .vith Sedgwick's
equations is not entirely unexpected, since his equation is itself based on fits to cziculations done
with the HELP hydrodynamic code. If anything, this merely proves tha: CTH .nd HELP give
similar answers (both correct or both incorrect?).

We see that the scaling laws of Cour-Palais (1985) (for d, = 1 ¢cm) and Bruce ;1962) are very
close to POD's equations. Cour-Palais' equation utilizes a supralinearity term ¢ >, and is

P/d, = 5.24 d,°%¢ (p,/p)">* (1/H)** (u,cos8/cq)* (100)
where H is the Brinell hardness number.

It is of interest to note the good agreement of his equation for unit diamete:. As ::ated in Section
2.3.9, POD believes the supralinear index effectively goes to zero for a 1 cm dia:.:eter projectile.

Unfortunately, the later data of Bruce (1979) gives a much poorer fit. Other re:sonable fits are
those by Dunn, Goodman-Liles, Sawle, and (for crater diameter only) Summe:s. The scaling
laws of Christman, Herrmann-Jones, Sorenson, and Summers-Charters give much poorer fits.
Disconcertingly, the law of Summers-Charters (P/d,) shows the wrong power index versus impact
speed, indicating an index greater than unity. This is contrary to all other law=, experimental
observations and physical logic, except at very low impact speeds. It is poss:dle that this is
another misquote by Schonberg. POD has not yet checked this possibility.

With regard to experimental data there are some ambiguities since not all resear::aers have used
consistent definitions of crater diameter and depth. This would help explain why differing "fits"
to similar experiments are often seen to be "off-set” from one another on the piots. The most
respected definitions (Cour-Palais) are those that reference the original target suriace, and POD's
analysis and measurements from the CTH calculations have used these definitic is.
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4.2 Cratering in TFE Teflon

The results of POD's Equations 21 and 28 were shown in Figure 52. We see that for a projectile
of Al 6061-T6 these equations give good fits to the CTH predictions, being about 18% low
across the entire velocity range. A large number of existing scaling laws describing either
penetration depth and/or crater diameter have been identified and compared. Schonberg (1989)
has listed many of these laws. For convenience, we list the appropriate laws, and Schonberg's
references in Appendix B. However, these laws are mostly based on observation for aluminum
targets. Therefore, those equations which do not explicitly contain material yield strengths cannot
be used to describe Teflon targets. Consequently, only those laws which do contain the yield
parameter have been used. Figures 142 through 146 show the predictions from these other
scaling laws for the case of an AL 6061-T6 projectile into Teflon.

If these other scaling laws were truly "generic” they should fit the Teflon data just as well as they
did the aluminum data, when the appropriate material properties are used. It is clear, however,
that this does not happen. POD's equations, however, do gives good fits to both Teflon and
aluminum data.

Only the equations of Sedgwick, Bruce (his 1979 version), Dunn and Sorenson can be used for
these comparisons, since none of the others contain the yield parameter (although some contain
hardness numbers).

The Cour-Palais equation makes use of Brinell Hardness of the target, rather than the yield
strength. This is unfortunate, since the Cour-Palais equation is frequently used by NASA for
cratering predictions. The problem with hardness numbers is that they do not directly relate to
other material properties, such as yield, and are difficult to compare if different scales are used
for different materials. Thus while aluminum has a well quoted Brinell hardness number (BHN
95 for 6061-T6), TFE Teflon has a Shore hardness of D52. An approximate equivalent is a
Brinell value of about BHNS (or Rockwell R60) (Harper, 1992). Using the Cour-Palais equation
with this hardness value, with a Teflon density of 2.17 g/cm’, and a sound speed of 1.29 km/s,
the predictions are too large for penetration depths or diameters, as seen in Figure 143.

The equation by Sedgwick et al. (1978) is reasonably close to the CTH data for penetration
depth, but it significantly overpredicts the crater diameter. Sedgwick's equations give good fits
for aluminum, but not for Teflon. Since his equation is itself based on fits to calculations done
with the HELP hydrodynamic code for aluminum, this demonstrates that the latter fit is somewhat
fortuitous. POD believes this is an example of wrongly choosing the "pi” groups for the
equation, as discussed earlier.

We see that the scaling laws of Bruce (1979) give very poor fits (grossly overpredicting), for
either depth or diameter. The equations of Bruce (1979) give very poor fits to aluminum data,
also. Dunn's equations also give gross overpredictions for both depth and diameter for Teflon,
but give reasonable fits for aluminum. Lastly, Sorenson’s (1962) equations give a good fit for
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Teflon depth data, but overpredict the diameter data.  Sorenson's equatic-:S give gross
underpredictions for both depths and diameters for aluminum.

With regard to experimental data there are some ambiguities since not all investig-ors have used
consistent definitions of crater diameter and depth. This would help explain why differing "fits"
to similar experiments are often seen to be "off-set" from one another on the pists. The most
respected definitions are those that reference the original target surface, and POI*'s analysis and
measurements from the CTH calculations have used these definitions.

POD concludes that, unlike the POD equations presented here, practically none -f the previous
existing scaling laws can be considered generic.

43 Perforations in Aluminum

Several existing scaling laws describing perforation, specifically the Ball:stic L.mit, have been
identified and compared. McDonnell and Sullivan (1992) have listed many of tzese laws. For
convenience, we list the appropriate laws, and McDonnell's references in Appendix B. Figures
147 and 148 show the predictions from the laws for the case of an Al 6061-T6 projectile into Al
6061-T6. Also shown are the results of POD's Equation 59. We have previcusly shown in
Figures 60 and 61 that, for a projectile of Al 6061-T6, this equation gives a gooc fit to the CTH

predictions.

In Figure 147, it is seen that of the various equations by McDonnell (1992), his £quations 6, 7,
and 10 all closely fit the CTH data for Al 6061-T6 projectile and target, provided the value of
800 bars is used for o, (as done by McDonnell), o, is set to 2.7 kbars, and 4, = 1.0 cm (to
*remove” the supralinear term, as suggested by POD in Section 2.3.9 for such laige projectiles).
However, his Equation 11 (McDonnell, 1979) is a poor fit, tending to risc too fast as the impact
speed increases. McDonnell assumes that the tensile strength should be used, whereas POD
concluded that both yield and tensile strengths are needed, as per Equation 59. Adl three of these
McDonnell's equations are close fits to the CTH data. However, since McDonnzll recommends
(in his report) the use of his Equation 10, and since it fit POD's Equation 59 ths best, we have
used this equation in Figure 148 to compare with the predictions of scaling :aws from other
investigators.

The equation by Naumann (1966) over-predicts the CTH data by a factcr of al-out three, and is
clearly not good for aluminum into aluminum.

The equation by Cour-Palais (1979) is reasonable for an A/Al impact, but is co:.sistently a factor
of about 1.2 too high. Perhaps this is because the equation was based on a soi:zer material than

Al 6061-T6.

Both the equations of Fish and Summers (1965) and of Pailer and Grar (198¢; involve a term,
¢, describing ductility. Since this quantity is not well defined it is difficult to <stermine exactly
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how well either of these equations fit the CTH data. However, both equations have the highest
of all the various velocity indexes, suggesting over-predictions at higher speeds.

For predictions of the perforation hole sizes, equations have been given by Maiden et al. (1964),
McHugh (1962), Sawle (1969), and Brown (1970). All of these equations have the property of
predicting significantly ever larger holes as the impact velocity increases. Further, only that by
Sawle includes material densities, most only use linear dimensions!

Herrmann and Wilbeck (1986) point out that such equations rarely fit a wide range of data. The
equations by Sawle, Maiden and Brown imply that the hole size increases with almost a (T/d,)**
rule, but the data is not well confirmed. Brown observed "odd non-linearities" as the target
thickness decreased to zero, but no rational explanation was given.

POD's Equations 75 and 76 indicated a roughly simple linear rule for hole size versus (T/d,)
when the latter was very small, but a reducing index as T/d, increased.

4.4 Perforations in Teflon

As described above for aluminum, several existing scaling laws describing perforation,
specifically the Ballistic Limit, have been identified and compared. McDonnell and Sullivan
(1992) have listed many of these laws. For convenience, we list the appropriate laws, and
McDonnell's references in Appendix B. F igures 149 and 150 show the predictions from the laws
for the case of an Al 6061-T6 projectile into TFE Teflon. Also shown are the results of POD's
Equation 59. We have previously shown in Figures 91 and 92 that, for a projectile of Al 6061-
T6, this equation gives a good fit to the CTH predictions.

In Figure 149, it is seen that of the various equations by McDonnell (1992), his Equations 6, 7,
and 10 all fit the CTH data (slightly low) for Al 6061-T6 projectile and TFE Teflon target,
provided the value of 800 bars is used for o, (as done by McDonnell), q is set to 0.2 kbars (as
with the CTH data), and d, = 1.0 cm (to "remove" the supralinear term, as suggested by POD
in Section 2.3.9 for such large projectiles). However, his Equation 11 (McDonnell, 1979) is a
poor fit, tending to give very low predictions. McDonnell assumes that the tensile strength
should be used, whereas POD concludes that both yield and tensile strengths are needed, as per
Equation 59. All three of these McDonnell's equations are close fits to the CTH data. However,
since McDonnell recommends (in his report) the use of his Equation 10, and since it fit POD's
Equation 59 the best, we have used this equation in Figure 150 to compare with the predictions
of scaling laws from other investigators.

The equation by Naumann (1966) overpredicts the CTH data by a factor of about two, and is
clearly not good for aluminum into TFE Teflon. In Section 4.3 it was shown that Naumann was
also high by a factor of about three for aluminum into aluminum.

The equation by Cour-Palais (1979) is too low by a factor of about 0.6 for an Al/Teflon impact.
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Both the equations of Fish and Summers (1965) and of Pailer and Grin (1980; involve a term,
€, describing ductility. Since this quantity is not well defined it is difficult tc determine how
well either of these equations fit the CTH data. For TFE Teflon, we took thi; quantity as an
average of the values quoted by Shackelford and Alexander (1992). Thus we used €= 275%.
However, for the Al/Teflon impact, Fish and Summers predict low (similar to Co.r-Palais), while
Pailer and Griln are very close to POD's Equation 59.

If these other scaling laws were truly "generic" they should fit the Teflon data ju:. as well as they
did the aluminum data, when the appropriate material properties are usecd. It is clear, however,
that this does not happen. POD's equation, however, does give good fits to :-oth Teflon and
aluminum data.
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5.0 COMPARISONS WITH EXPERIMENTAL DATA
5.1 Cratering in Aluminum

Some recent well characterized experimental impact data have been provided by Hérz (1992).
These experiments have made use of a gas gun at NASA Johnson Space Center to accelerate
projectiles of soda-lime glass at aluminum targets of Al 1100 and Al 6061-T6. The impact
speeds were all about 5.8-5.9 km/s and were normal to the target surfaces. The projectiles were
of 50, 150, 1000 and 3175 microns diameter. Horz carefully measured the crater diameters for
each experiment, using the initial target surface as the reference plane. The primary purpose of
these experiments was to study perforations, consequently only a small fraction of the data were

for craters in thick targets.

For the thick Al 1100 targets the values of (d/d,) versus projectile diameter were found to be
4.33 (3175 microns), 5.01 (1000 microns), 4.92 (150 microns) and 3.2 (50 microns). For the Al
6061-T6 the ratio was 3.35 (3175 microns). This latter value is about 15% lower than the POD
CTH calculation for an Al/Al impact. Soda-lime glass has a density of about 2.2 g/cm’ and a
slightly lower sound speed than aluminum. Accordingly, Equation 21 predicts only a very small
difference (i.e., a few percent) versus the Al/Al impact.

Although the data base is small and therefore subject to some error, a distinct drop in crater
diameter is seen for the smallest projectiles versus the larger ones. The larger projectiles tend
to give a systematic trend in crater diameter, except for the largest ones. Comparing the 50
micron projectile data with the 3175 micron data there is an apparent supralinear index of about
0.073, while comparing the 50 micron data with the 1000 micron data gives an index of 0.149.
These apparent indexes are both larger than the Cour-Palais quote of 0.056 and may be a
consequence of the small data base.

Comparing the results for Al 1100 versus those for Al 6061-T6 we see that the crater diameters
were in the ratio of 4.33 to 3.35, i.e, 1.293. The only significant difference in these two
aluminums are the yield strengths. Equation 21 gives an index of -0.2857 for crater diameter
versus yield strength, while the fit to the CTH data gave an index of -0.258. Thus to explain the
experimental data, assuming the yield strength of Al 6061-T6 is 2.7 kbars, requires the Al 1100
to have a yield strength of either 1.098 or 0.997 kbars. Engineering data (Shackelford, 1992)
identifies this aluminum to be of temper H12 (i.e., Al 1100 H12), which is one of the softer

aluminumes.

Recent cratering data have also been provided by Christiansen (1992¢) for aluminum projectiles
into Al 6061-T6. This work was done at the NASA JSC HIT-F gas gun facility, as part of a
careful study of oblique impact responses. For a normal impact with an impact speed of 6.83
km/s the experiments give P/d, = 2.1 and d/d, = 4.55. These values are close to both the CTH
predictions and POD's predictions using Equations 28 and 21, respectively. CTH gives P/d, =
2.2 and d/d, = 4.0, while POD's equations give P/d, = 2.2 and d/d, = 4.1.
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5.2 Cratering in Teflon

There is only a limited data base for impacts into Teflon TFE. Some recent we:! characterized
experimental impact data have been provided by Horz (1992) for projectiles of soda-lime glass
and Teflon TFE targets. The impact speeds were all about 5.8-6.3 km/s and werz normal to the
target surfaces. The projectiles were of 50, 150, 1000 and 3175 microns diame::r, but only the
largest ones were used for cratering in thick targets. Horz carefully measurad the crater diameters
for each experiment, using the initial target surface as the reference plane. The primary purpose
of these experiments was to study perforations, consequently only a small fraciion of the data
were for craters in thick targets. Horz also sent photographs to POD of cross-szctions through
the Teflon samples, shown in Figure 4. It is evident from these pictures that the c-aters in Teflon
are not smooth-surfaced as with a ductile metal target. Instead, the craters suffer from rough
surfaces and show signs of surface fracture, some radial cracking, and also iave & "hairy”
morphology indicating "strings” of partially melted/resolidified material (with t:e exception of
the "strings” these morphological features are similar to the CTH example given s:ove). Because
of these features the "exact” value of crater diameter is difficult to define. For example, for the
case of D,/T, = 0.125 in Figure 4, Horz quotes a crater diameter of 1.18 cm, for & 3175 micron
soda-lime projectile into a one inch thick Teflon target (i.e, (d/d) = 3.72). PO:'s independent
estimate of this diameter is 1.3 to 1.5 cm (i.e., (d/d,) = 4.09 to 4.72), base< solely on the
photograph. Thus a possible 27% error in the quote exists. This is consistznt wi:= Horz's (1992)
findings that the "standard” crater in Teflon was difficult to measure.

Thus for the thick Teflon targets the values of (d/d,) were found to be in the ra--3e 3.72 to 4.72
(3175 micron projectile). The CTH value is about 5.7 for an impact speed of 6.3 km/s and a
Teflon yield strength of 300 bars. This CTH value, for an Al/Teflon impact, is aigher than the
experimental value(s), for soda-lime glass/T eflon impacts, by a factor of betwe=n 1.21 to 1.53.
Soda-lime glass has a density of about 2.2 g/em® and a slightly lower so=ad speed than
aluminum, so Equation 21 predicts a very small difference (i.e., a few percent) versus the
Al/Teflon impact. To make the CTH calculations agree with the experime=is it would be
necessary to either increase the assumed yield strength, or decrease the assumed t-:1k sound speed
of the Teflon.

With the exception of Sedgwick's 1978 law (which is close to the CTH peaetration depth
predictions for Teflon TFE) and Sorenson's 1962 law (which is close to tze Equation 28
penetration depth predictions for Teflon TFE), the other scaling laws (presentec in Section 4.0)
substantially overpredict the CTH values and, thus, the experimental data. However, as
previously stated, the Equation 21 and 28 predictions of crater diameter and penetration depth
are consistently 18% below the CTH values. Thus these equations predict values between the
CTH values and Horz's experimental data. As shown in Figure 52, for the exper:mental velocity
regime over which Horz found the Teflon (d/d,) values to be in the range of 3.72 to 4.72,
Equation 21 predicts (d/d,) values in the range of 4.6 to 4.95. Picking the highest value (at 6.3
km/s), Equation 21 is higher than the experimental value(s) by a factor of betwee: 1.05 and 1.33,
for an Al/Teflon impact. Since the soda-lime glass used in Horz's experimests has a lower
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density and sound speed than aluminum, Equation 21 predicts a very small difference (i.e., a few
percent) versus the Al/Teflon impact. ‘

Since only one projectile size was used there is no data conceming supralinearity.

5.3 Perforations in Aluminum

Some recent experimental impact data have been provided by Horz (1992) for projectiles of soda-
lime glass and thin aluminum targets. The impact speeds were all about 5.8-6.3 km/s and were
normal to the target surfaces. The projectiles were of 50, 150, 1000 and 3175 microns diameter.
However, only the largest projectiles were used to obtain data on Al 6061-T6 (modelled in this
report). All projectile sizes were used for Al 1100 targets, however. Horz carefully measured
the crater diameters for each experiment, using the initial target surface as the reference plane.
The primary purpose of these experiments was to study perforations. Horz also sent photographs
to POD of front and rear views of the aluminum samples, shown in Figures 151 and 152.

Although Hoérz used soda-lime glass instead of aluminum for the projectiles, POD's equations
indicate that the difference in perforation responses is only a few percent. For Al 6061-T6 the
experiments indicate that the Ballistic Limit occurs for T/d, of about 3.0. As shown in Figures
60 and 61, this number is very close to the CTH predictions of 2.8 (perforation) to 3.3 (no
perforation) for an impact speed of 6 km/s. Likewise, POD's Equation 59 gives a similar, but
slightly lower, value of 2.6.

For Al 1100 the major material properties which differ from Al 6061-T6 are the yield and tensile
strengths. Based on the cratering data we deduced that the temper of the metal was H12.
Standard handbook quotes (Shackelford and Alexander, 1992) give the yield strength of Al 1100
H12 as 1.0 kbar and the tensile strength as 1.1 kbars, versus 2.7 kbars and 3.1 kbars, respectively,
for 6061-T6. Equation 59 suggests that this will increase the limiting value of T/d, to about 3.5
at 6 km/s. This value is consistent with the experimental data.

Comparing Horz's data as a function of projectile diameter reveals that a supralinear behavior
exists. Comparing the 50 micron results versus the 3175 micron results, the data indicates an
index of about 0.07, which is a little higher than the Cour-Palais quote of 0.056, and both values
are consistent with the supralinearity indexes expected from POD's approach in Section 2.3.9.

5.4 Perforations in Teflon

Recent experimental impact data have also been provided by Horz (1992) for projectiles of soda-
lime glass and thin TFE Teflon targets. The impact speeds were all about 5.8-6.3 km/s and were
normal to the target surfaces. The projectiles were of 150, 1000 and 3175 microns diameter.
Horz carefully measured the crater diameters for each experiment, using the initial target surface
as the reference plane. The primary purpose of these experiments was to study perforations.
Horz also sent a photograph to POD of cross-sectional views of the Teflon samples, shown in

Figure 4.
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Although Horz used soda-lime glass instead of aluminum for the projectiies, PC:D's equations
indicate that the difference in perforation responses is only a few percent. For TFE Teflon the
experiments indicate that the Ballistic Limit occurs for T/d, of about 5.8 = 0.25. As shown in
Figures 91 and 92, this number is very close to the CTH predictions of 5.5 (perfsration) to 6.4
(no perforation) for an impact speed of 6 km/s. Likewise, POD's Equation 59 gves a similar,

but slightly lower, value of 5.1. All of the other investigators' (e.g., McDonneli, Cour-Palais)
predict much lower values (the closest being Pailer and Griin with a value of abou: 4.7), with the

exception of Naumann (who substantially overpredicts a value of about 7.9).

Horz's data as a function of projectile diameter is presently insufficient tc allow Jetermination
of supralinear behavior.

5.5 Oblique Impacts in Thick Aluminum

Some recent careful studies of oblique impacts of aluminum into thick Al 5061-" 5 targets have
been done by Christiansen (1992¢) at the NASA JSC HIT-F gas gun facility Christiansen
studied the responses over an obliquity range of from 0° incidence to 88° incidence, using small
incremental angular changes at the high obliquities. The experiments were all done with an
impact speed of about 6.75 + 0.2 km/s. The data show that the value of P/d, rcughly obeys a
(cosB)** law, as expected, but tends to drop somewhat faster at very large angles of incidence
above 70°. This behavior is similar to POD's prediction of Equation 83 which is siown in Figure
8 The data also show that the value of d./d, roughly obeys a (cosd)>* law, =ad is an even
better fit to a (cos0)®*™ law as given by POD's Equation 82 and shown in Figu-e 8.

Of great interest is the data for ieg/dunon » Where diggg is the extended diame:er for sblique impact
and d,,, is the perpendicular diameter. For angles of incidence below about €9° this ratio is
essentially 1.0 indicating that the craters are basically axisymmetric. However, fos larger angles
the ratio rapidly increases. To a first approximation the ratio fits the rule 0.55tan0 over the
angular range 60° to 88° This behavior should be compared with the *:an " iagic of POD's
Equation 89 which describes the ability of the top of the projectile to just escape its own crater.
An interpretation is that by just failing to escape its own crater the projectile is causing the
downstream stretching of the crater.

5.6 Oblique Impacts in Thin Aluminum

Unfortunately, there is little data concerning the definition of the Ballistic Limi: for thin target
perforations as functions of obliquity. Instead, most experimenters have used fixed-thickness thin
targets to study the effects of obliquity on ricochet of the projectile and perforation debris ejecta.
Christiansen (1992c) and Schonberg (1988, 1989) have done such studies. As with cratering it
is observed that ricocheting occurs above about 60° angle of incidence.
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6.0 OTHER MATERIAL COMPARISONS
6.1 Copper Cratering

POD has recently received details of work done by Wingate et al. (1992) at Los Alamos National
Laboratory (LANL), presented at the 1992 HyperVelocity Impact Symposium (HVIS). The work
involves copper on copper impacts, and compares four code predictions. The codes are: EPIC,
MESA, SPH and CALE, and experimental data is also compared. The following table lists the
codes' results and the POD predictions.

The calculations are for an impact at 6 km/s. The projectile diameter was d, = 0.4747 cm (0.5g).
Properties for copper were: P, = P, = 8.93 g/lem’, ¢, = 3.94 kmJs, s = 1.49, Y, = 2.4 kbars
To compute our values POD used Equations 28 for P and 21 for d..

RESULTS

QUANTITY EXPERIMENT EPIC MESA SPH CALE POD

P (CM) 1.4 1.8 1.59 1.73 1.51 155
D, (CM) 2.54 2.4 2.8 2.6 244  2.7]
P/D, 0.55 0.75 0.57 0.67 062 0.572

We observe that POD's predictions are close to the experimental data. Also note that the
variations in the code answers are themselves about 19% (for P), 17% (for d.) and 32% (for P/d).
The ratios for the POD values versus experiment are:

1.107 (for P), 1.07 (for d_) and 1.04 (for P/d,).

Part of Wingate's work was to explain supralinearity for small (micron size) projectiles. To do
so he invoked strain-rate hardening and proposed that the effective yield strength of copper acted
as if 5 times larger than normal, and thus was set at 12 kbars. This increased yield value reduced
the code predictions for crater volume by a factor of 4.1 (EPIC), 4.4 (MESA) and 3.3 (SPH).
The POD prediction is 3.973 (Equation [21]) for the same higher yield. Note that LANL did
not actually use a strain-rate model, they merely increased the yield value in the elastic-plastic
model.

6.2 Lead Cratering

As part of his recent studies of cratering and perforation, Horz also used lead targets with soda-
lime glass projectiles. Horz also sent photographs to POD of cross-sectional, front and rear views
of the lead samples, shown in Figures 153, 154 and 155, Using Equation 21 for crater diameter
we can find the ratio of lead crater diameter versus aluminum 6061-T6 crater diameter for
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constant projectile size and impact speed. Assuming a lead density of 11 35 g/c.2’, sound speed
of 2 km/s, and yield strength of 0.13 kbars, we predict that lead craters are app:roximately 1.54
times larger than aluminum craters. Horz's data gives a ratio of about 1.48. T:.us Equation 21
appears to give a good prediction.
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7.0 CONCLUSIONS

7.1 Cratering

Based on the present work POD believes it has a strong insight into cratering laws. Clearly the
concept of hemispherical craters is rarely correct, and it appears that diameter is governed by
different rules from those giving depth, although the craters do asymptote towards hemispheres
for the higher impact speeds. The work demonstrates that target strength is a strong driver for
crater size. While increasing the ratio of projectile density to target density always increases
crater sizes the responses are not simple power laws. Likewise the power index for impact speed
is not the simple 2/3rd value. Overall, the data suggest that several of the indexes are "coupled”
(e.g., the index for density is itself dependent on the velocity, etc.).

POD believes it has identified the source of the supralinearity observed in cratering, and has
shown the effect to be related to material strength behavior, in particular that of the target. The
resulting analysis suggests that the supralinear effect is really a small-size downgrading and that
the effect essentially vanishes for craters larger than about 1 cm diameter. Although insufficient
material property data exists for Teflon TFE, POD believes the size effect to be roughly the same
as for aluminum. Accordingly, projectiles of size 3175 micron (1/8 inch) are close to the limit
where supralinearity asymptotes. Unfortunately, there were no quotes by Horz for crater
diameters for smaller projectiles.

POD has considered the possible effects of momentum enhancement for grossly vaporizing
projectiles (e.g., for very high impact speeds), and has concluded that this enhancement is
generally only a few percent. Accordingly, the effect is minor and no obvious "step jumps” in
cratering responses are expected as materials vaporize. The CTH aluminum and Teflon
calculations do not indicate any "vapor" effects on either crater diameter or penetration depth up
to 15 km/s impact speeds, even though partial vaporization of both the aluminum projectile and
some of the aluminum and Teflon targets occurs at the higher speeds. (Note that both the Mie-
Gruneisen and ANEOS equations of state were tried in the CTH runs with little difference in
results).

From the above efforts, POD believes that, for aluminum, the physics-based scaling laws
presented in Equations 21 and 28 should be used for making predictions of, or interpreting data
from, crater diameters and depths, respectively. An alternative would be to use Sedgwick's 1978
scaling law for penetration depth. However, if Sedgwick's law is used, it must be borne in mind
that Sedgwick does not account for the difference between crater diameter and penetration depth.
A further alternative would be to use the two CTH fits which do differentiate between diameter
and depth. However, both of these alternatives are based purely on a hydrodynamic approach.
For these reasons, POD presently recommends that its Equations 21 and 28 be used.

Based on the present work, these scaling laws apply to both aluminum and Teflon, and also seem

to work well for copper and lead. Equations 21 and 28 are dimensionless; however, these
equations were derived from physics and thus suffer none of the irregularities (caused by
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improper selection of "pi" terms) which hamper the other existing scaling laws. In comparisons
to CTH hydrodynamic code calculations, Equations 21 and 28 closely matche: the predictions
for aluminum and was within 18% of the predictions for Teflon. In addition, these equations
predict trends in crater diameters and penetration depths, with varying targe: and projectile
material properties and impact velocities, which match the trends predictei by CTH. In
comparison with experimental data (Horz, 1992), Equations 21 and 28 closely =:atched the data
for aluminum impacts and was within a factor of 1.05 to 1.33 for Teflon impe-ts.

This work has also shown that the maximum depth of the craters usually o.zurs before the
maximum crater diameter has formed.

While alternative scaling laws exist, none of the previous existing scaling :aws c¢.a be considered
generic since they fit impact data either for aluminum or for Teflon, but not fo: both materials.
In addition, these other scaling laws are only applicable over limited velocizy and material
property regimes (i.e., they do not correctly predict trends in crater diamete: or penetration
depth). For the above reasons, POD strongly recommends that, for both alumizum and Teflon
TFE, the physics-based scaling laws presented in Equations 21 and 28 should be =:sed for making

predictions of, or interpreting data from, crater diameters and depths, respectiv-iy.

7.2 Perforations

Based on the present work, POD believes it has an insight into perforatior. laws, and has
developed a generically applicable scaling law (Equation 59) for predict:ng th: Ballistic Limit
perforation conditions for both aluminum and Teflon. We conclude that tae equation describing
the Ballistic Limit has two parts, one relating to the crater depth, and one relating to the
reflection of the shock pulse from the target rear surface. The former ierm d:=pends on yield
strength and has roughly a 2/3 index for impact speed, while the latter term de;=2nds on tensile
strength and has roughly a unit index for impact speed. Thus the work demonzirates that both
target yield strength and tensile strength are strong drivers for determining perigrations. Since
most other researchers use only a single equation term, it is not surprising that z:biguities arise
with regard to which material strength term to use, and with regard to the corr-ct speed index.

POD believes the supralinearity effect also applies to perforation.

From the above efforts, POD believes that, for aluminum and Teflon, th- physics-based
perforation law presented in Equation 59 should be used for making predictions of the Ballistic
Limit. An alternative would be to use any of the three referenced McDonnell and Sullivan 1992
scaling laws (Equations 6, 7 and 10) for perforations in aluminum. There is no clearly obvious
"best case” among these three McDonnell equations. McDonnell's Equation 10 gives the closest
fit to POD's Equation 59, and all three of these McDonnell equations give close iits to the CTH
data. A further alternative would be to use the CTH fit. However, these McDunnell and CTH
fit equations are not based on the physics approach (as taken by POD) and may not be directly
applicable to other materials.
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Equation 59 is dimensionless; however, this equation was derived from physics and thus suffers
none of the irregularities (caused by improper selection of "pi" terms) which hamper the other
existing scaling laws. In comparisons to CTH hydrodynamic code calculations for perforations,
Equation 59 closely matched the predictions for aluminum and was within 10% of the predictions
for Teflon. In comparison with experimental data (Horz, 1992), Equation 59 closely matched the
data for aluminum impacts and was within a factor of 1.09 to 1.19 for Teflon impacts.

This work has shown that, for the Ballistic Limit case, the crater diameter is essentially the same
as for the semi-infinite target case. However, this work has also developed physics-based
equations (Equations 72, 76 and 77) which predict both this effect, and the effect observed
experimentally in ultra-thin targets (foils) where the crater diameter asymptotes to the projectile
diameter.

While alternative scaling laws exist, none of the previous existing scaling laws can be considered
generic since they fit impact data either for aluminum or for Teflon, but not for both materials.
POD's equation, however, does give good fits for both Teflon and aluminum data. In addition,
these other scaling laws are only applicable over limited velocity and material property regimes
(i.e., they do not correctly predict trends in crater diameter or penetration depth). For the above
reasons, POD strongly recommends that, for both aluminum and TFE Teflon, the physics-based
perforation scaling law presented in Equation 59 should be used for making predictions of the
Ballistic Limit.

7.3 Oblique Impacts

POD believes it has confirmed that for oblique impact the component of impact velocity normal
to the target correctly describes the target responses. POD has implemented a cos8 correction
in its Equations 21, 28 and 59 to account for this phenomenon, giving final corrected Equations
82, 83 and 84. POD recommends that these equations be used for impacts at any angle of
incidence into both aluminum and TFE Teflon targets.

POD has also indicated the important factors which determine the process of ricocheting of the
projectile and has developed and validated criteria (Equations 87 and 88) for predicting partial
and complete projectile ricochets.

Finally, it should be noted that all of POD's equations were derived from physics using the logic
of the conservation of momentum versus conservation of energy.

7.4 Implications for LDEF

The primary implication for LDEF (and for other returned spacecraft materials) is that the Cour-
Palais equations should be used with care for data interpretations, since while these equations
give good fits for thick aluminum targets, they give much poorer fits for Teflon and for
perforations. For the Ballistic Limit for thin foils, the McDonnell equations (McDonnell and
Sullivan, 1992) are the best existing scaling laws and can be used (although we recommend using
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POD's equations in the future). However, the McDonnell equations should not be :sed for cases
where the target thickness is large compared to the particle diameter. It should be soted that this
latter is largely the case for LDEF's TFE Teflon blankets. For these reasons, we regommend that
the LDEF data be interpreted using the POD equations presented in this series =f reports. In
addition, the Solar Maximum Mission data should be reinterpreted for determining the meteoroid
and debris particle impactor sizes for use in developing the environment riodels
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8.0 RECOMMENDATIONS FOR FUTURE WORK

For future work POD recommends that cratering studies be done for other ductile and brittle
target materials, including plastics (e.g., Kevlar, Mylar, Kapton). Also there remains a need to
study the effects of projectile shape, and the progression of responses as the shape changes from
plate-like through spherical to rod-like.

POD believes that most of the uncertainties in the appropriate indexes could be resolved by more
detailed studies of the "inner responses” of the CTH code calculations (e.g., using many tracer
points to track out the behavior of stress, velocity and motion). This should better determine the
"N+1" index in Equation 21. Likewise, such detailed studies done for the lower impact speeds
would allow a better understanding of the regime of small craters, where the assumption of
hemispherical shock waves is far from valid. This is the region where the responses change from
the Bernoulli flow state into the elastic-plastic, and can occur at speeds of greater than 3 km/s
for the case of strong ceramics.

A parameter that needs tracking is the strain-rate effect on cratering. POD's present analyses used
only the standard elastic-plastic models for CTH. By testing for sensitivity to variations in strain-
rate it will be possible to determine whether high strain rates change the final crater dimensions
(i.e., contribute to supralinearity as suggested but never proven by many investigators), or merely
alter the dynamic shape and rate of development (as suspected by POD).

The issue of high impact speed vapor momentum enhancement needs to be studied more
accurately. POD's present analysis suggests only a relatively minor enhancement for a vaporizing
projectile. Analysis by others (Lawrence, 1989) suggest a much larger effect at very high impact
speeds where substantial portions of the target also vaporize. The issue is whether the larger
momentum translates into noticeably larger craters (or a different shape) for a given impact speed.

For additional work in the future, POD recommends that the analytic approach for transition
between pure cratering (in semi-infinite targets) and marginal perforation be more fully
developed. Additionally, an approach needs to be developed to determine the back surface
spallation and the perforation hole sizes. Also, perforation studies need to be done for other
materials.

CTH calculations could be done to track out the data observed by Horz of varying hole size
versus target thickness. This would allow a firmer understanding of this behavior. Horz's work
is important because it indicates one of the very few techniques for deciphering perforation data
for projectiles which are not much larger than the target thickness.

Based on the ricochet and oblique impact laws reported here, studies should be done to extend
the laws and correlate oblique impact crater asymmetries versus diameter and depth to allow
direct interpretations of impact angles.



Studies should also be done for layered targets, such as the thermal blznkets .n LDEF, and ih
thermal paints on aluminum.

Additionally, those individuals working on alternative scaling laws (e.g., McDoz:nell, Cour-Palais
should use the "pi" terms identified in this series of reports in order tc provide better physics.

based fits to the data.
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Figure 3. Plot of the Petch Law’s Supralinearity
Downgrading Factor vs. Crater Radius (for Aluminum)
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Figure 5. Plot Showing How Watts’ Eq. 59 Varies
with N (Al into Al Impact)
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Figure 11. Plot of CTH Resuits Showing How F/dp Yaries
With Velocity and Projectile Density for Al into A
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Figure 13. Plot of CTH Results Showing How P/dp Varies
With Velocity and Target Yield Strength for Al into Al

10 R A T

= - o
> <1 PP R
e
1 :::v,.-.,ijl‘/ pu = 1 1.:‘5
e et
o DA S SRR
] R 4 ERENNEE
-~ e ! | A
o | i ! S W S S
A 1 R
01 o et
F— ——1-|—Yield Strength = 0.27 kbars
[~ "--Yield Strength = 2.7 kbars
+.——|—Yield Strength = 27 kbars
0.01 N Lo 1ty i N
1 10 100
Velocity (km/s)

Figure 14. Plot of CTH Results Showing How dc/dp Varies
With Velocity and Target Yield Strength for Al into Al
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Figure 15. Plot of CTH Results Showing How P/dp Varies
With Projectile Density and Velocity for Al into A

10 = — —
[ RS | * IS o
A S S A S S R
A T
N ! ',/":/'I' w’,j" vl i
: | g ISR
i1 = L ' i - i 1/71
: e
g — i
= L] | A ST
NI ZEE
0.1 o e e
— - —Velocity = 1 km:/s
- —— --Velocity = 5 km:/s
IS —Velocity = 10 km/s
T || Veloctty = 15 kia/s
0.01 i o 1 Al T T y > S— — — o ]
0.1 1 19
Density (g/cc)

Figure 16. Plot of CTH Results Showing How dc/dp Varies
With Projectile Density and Velocity for Al inio Al
10

§ } ! T I r ;.
—|—Velocity = 1 km/s g
| --Velocity = 5 km/s il jf
—|—Velocity = 10 km/s T
|~ Velocity = 15 km/s| |- T
A
/V‘; /-"‘-f.. ,!‘ :
§ 4 ]
(4] P i 1
© | y |
l ! ,/’ ! ‘

O L J L

R BN

! ' i | Vi l P

RN Il B R

b L
9 | ! 1 i .’ l i I
0.1 1 10
Density (g/cc)

A-10




Figure 17. Plot of CTH Results Showing How P/dp Varies
With Target Yield Strength and Projectile Velocity
For Al into Al
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Figure 19. Plot of CTH Results Showing How P/dc Veries
with Velocity and Projectile Density for Al into Al
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Figure 21.
8 Al Projectlls into Aluminum ot 10 km/s
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Figure 23.
Al Projactils into Aluminum ot 10 km/s
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Figure 25.
Al Projactlis Into Aluminum ot 10 km/s
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Figure 27.
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Figure 31.
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Figure 33. CTH Data Showing How P/dp Varies With
Projectile Density and Velocity for Al into TFE Teflon
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Figure 34. CTH Data Showing How dc/dp Varies With

Projectile Density and Velocity for Al into TFE Teflon
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Figure 35. CTH Data Showing How P/dp Varies Wit : =
Target Yield Strength and Projectile Velocity S

For Al into TFE Teflon .
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Figure 36. CTH Data Showing How dc/dp Varies Vyith
Target Yield Strength and Projectile Velocity

dc/dp

For Al into TFE Teflon
1m + T eyl
L ﬁ‘f
! ' A
I
=
! L
10 ‘? =3
T —% = ‘{
——
T O
T T N
' RS Nt NN
o ——
i —Yield Strength = 0.03 kbars
—-—+—*+|--Yield Strength = 0.3 kbars-
__ l]—Yield Strength = 3 kbars f
T R i L
0.1 ..A..lt A A 1..-;.| .
1 10 100

Velocity (km/s)
A-20




Figure 37. CTH Data Showing How P/dp Varies With

Projectile Density and Velocity

for Al into TFE Teflon
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Figure 38. CTH Data Showing How dc/dp Varies With
Projectile Density and Velocity for Al into TFE Teflon
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Figure 3. Plot of CTH Results Showing How P/dp Varies
With Target Yield Strength and Projectile Velocity

For Al into TFE Teflon
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Figure 41. CTH Data Showing How P/dc Varies With
Projectile Density and Velocity for Al into TFE Teflon
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Figure 42. CTH Data Showing How P/dc Varies With
Target Yield Strength and Projectile Velocity
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Figure 43.
0 Al Projectlls Into Teflon of 10 km/s
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Figure 45.
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Figure 47.
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Figure 49

Al Projectlls Into Teflon of 10 im/s
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Figure 51.
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Figure 60. Comparison of CTH Results versus
Watts’ Eq. 59 for Al into Al (6061-T6)
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Figure 90. Comparison of CTH Results versus
Watts’ Eq. 59 for Al into TFE Teflor
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Figure 92. Comparison of CTH Results versus
Watts’ Eq 59 for Al into TFE Teflon
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Figure 96.
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Figure 98.

P Al Projectlis through 700 micron Tefion Plole at 10 k
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Figure 100,
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Figure 102.
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Figure 104.
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Figure 108.
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Figure 130. Comparison of Watts’ Equations with
CTH Predictions for Aluminum on Aluminum (Al 6061-T6)

10

1T

—Watts’ Eq. 21 (dc/dp)
—Watts’ Eq. 28 (P/dp)

o CTH Cratering (dc/dp)
|+CTH Penetration (P/dp)

0 5 10 15 20 25 30
Velocity (km/s)

Crater Diameter/Particle Diameter (dc/dp)
Penetration Depth/Particle Diameter (P/dp)

O =2 N W & 00 O N @

Figure 131. Comparison of Watts' and
Bruce’s Equations for Aluminum on Aluminum
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Figure 132. Comparison of Watts' and
Bruce’s Equations for Aluminum on Aluminum:.
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Figure 133. Comparison of Watts’ and
Christman’s Equations for Aluminum on Aluminum
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Figure 134. Comparison of Watts’ and Cour-Palais’

Equations for Aluminum on Aluminum
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Figure 135. Comparison of Watts’ and
Dunn’s Equations for Aluminum on Aluminum
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Figure 136. Comparison of Watts' and
Goodman-Liles’ Equations for Aluminum on Alumgg\um
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Figure 137. Comparison of Watts’ and
Herrmann-Jones’ Equations for Aluminum on Aluminum
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Figure 138. Comparison of Watts’ and
Sawle’s Equations for Aluminum on Aluminum
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Figure 139. Comparison of Watts’ and
Sedgwick’s Equations for Aluminum on Aluminum
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Figure 140. Comparison of Watts’ and
Sorenson’s Equations for Aluminum on Alumlng;m

5 —

[ |—Watts’ Eq. 21 (dc/dp)

[ -- Watts’ EQ- 28 (P/dp) -
4 I —|-oSorenson’s Eq. (dc/dp) ="

| |+Sorenson’s Eq. (P/dp) S
3 | e Dlr:rcf"“DD

N

Crater Diameter/Particle Diameter (de/dp)
Penetration Depth/Particle Diameter (P/dp)

o

Velocity (km/s)

Figure 141. Comparison of Watts’ and
Summers-Charters’ Equations for Aluminum on Alumiaum
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Figure 142. Comparison of Watts’ and
Bruce's Equations for Aluminum on TFE Teflon
Assumes St Equals Yt for TFE Teflon)
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Figure 143. Comparison of Watts’ and
Cour-Palais’ Equations for Aluminum on TFE Teflon
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Figure 144. Comparison of Watts’ and
Dunn’s Equations for Aluminum on TFE Teflca
(Assumes Sigma-yt Equals Yt for TFE Teflon:
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Figure 145. Comparison of Watts’ and
Sedgwick’s Equations for Aluminum on TFE Tefig
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Figure 146. Comparison of Watts’ and
Sorenson’s Equations for Aluminum on TFE Teflon
(Assumes St Equals Yt for TFE Teflon)

8
[ | —Watts’ Eq. 21 (dc/dp) ,
- £|--Watts’ Eq. 28 (P/dp) S
. |.o Sorenson’s Eq. (dc/dp) Dc‘rc,uﬂ”
6 ||+ Sorenson’s Eq. (P/dp) po——

oo A

Crater Diameter/Particle Diameter (dc/dp)
Penetration Depth/Particle Diameter (P/dp)

4 5 6 7
Velocity (km/s)

A-77



Figure 147. Comparison of Watts’ and McDon;éell
& Sullivan’s Equations for Al into Al (Al 6061-T8)
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Figure 149. Comparison of Watts’ and McDonnell
& Sullivan’s Equations for Al into TFE Teflon
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Figure 150. Comparison of Watts’ Equation 59 versus
Other Investigators’ Equations for Al into TFE Teflon

18 ¢ -

§ _ [|--Naumann 1966
£ 16 f| - Pailer & Grun 1980 T
5 q4tb —Watts’ Eq. 59 (N=24) -~
2 ' |—McDonnell 1992C
8 12 f|— Fish & Summers 1965 |——— —
P | -- Cour-Palais 1979 _
g 10 } ; | — e
L ,1 -
& gf-—— - 2
@ : ’ | _
g 6 oA
- i L et
o : e
A N
g, 2 iz
LI
0 N " i 1 i i 1 i 1 't i
0 5 10 15

Velocity (km/s)
A-79



Figure 151.

Soda Lime Glass—»Aluminum 6067-Ts
Dp=3.17 mm V=5.9km/s
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Figure 152.
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Figure 153.

Soda Lime Glass — Lead
Dp=317mm V=6.3km/s
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Figure 154.

Soda Lime Glass — Lead
Dp=3.175mm V=6.3km/s
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Figure 155.
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APPENDIX

Penetration Depth Equations

Reference No. 27:

p/d = 2.28 (pp/pt)2/3 wic)i® V < 9 km/sec  (P-1)

Reference No. 28:

p/d = 1.96 (pp/pt)llz wietd V < 6 km/sec  (P-2)

Reference No. 29:

p/d = 1.5 (pp/pt)lls (ppVZ/ZSt)lls , V <8 km/sec  (P-3)

Reference No. 30:

p/d = 2.35 (pp/pt)o'70 (vicy?!3 V <9 km/sec  (P-4)

Reference No. 31:

p/d = 0.63 (ppvzloyt)1/3 V <7 km/sec (P-5)

Reference No. 32:

p/d = 0.482 (o lop "> wi1c)? 578 (v 4o, €0 v <2l kmisec  (P-6)
Reference No. 33:

p/d = 8.355 x 1074 pp2’3 o, H13 wimpl® V < 9.5 km/sec  (P-T)
Reference No. 34:

pid = 2.0 @ /op* 2 (VIOYHE V<9km/sec  (P-8)



Reference No. 35:

p/d = 0.311 (pp/pt)c'17 (ppVZISt)O'285 R VT ;;%n/sec

Reference No. 36:

p/d = 0.36 (pp/pt)zl3 (ptVZIBt)I/3 , V < 6 im/sec

Referencé No. 37:

-0.25p 0.5 0 -0.167 v4/3

p t , V <~l km/sec

p=2013x10 7 aln

p = 1.129 x 10-6 d1’056 Ht-0.25 ppl?!.S pt-0.167 Et-0.33 V4/3

V <n ‘ km/sec

Crater Diameter Equations

Referenée No . lé:

e, 2p/a® = 34 (o /o % (VIO? V < 4 im/sec

Reference No. 35:

a d Zpra® = 0.120 (pp/pt)"'5 (ppvzlst)"""15 : V< 7 m/sec
Reference No. 28:

o 4, %p/ad = 30.25 (pp/pt)3,2 wvic? V < 6 wm/sec
Reference No. 30:

ad, %prad = 44.10 (pp/pt)zla wvic)? V<9 amlsec
Réference No. 33:

a d %pra® = 2.65 x 1072 pp7/6 o Y2vEim, V< 9.5 km/sec
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Reference No. 36:

dh e e e
d
P .o
Bt .o
C - e o
Et ..
Ht .
S .o
St .o
Yt
v ...
a e e
Pp -
Y
oyt

3 3/2 2
ad, pra’ = 0.16 (o /o) " o, VEIB, V < 6 km/sec

Notation
crater surface diameter (cm)
projectile diameter (cm)
crater depth (cm)
target material Brinell Hardness (dynes/cmz)
speed of sound in target material (cm/sec)
target material elastic modulus (GPa)

target material Brinell Hardness Number (kg/mmz)

. target material static shear strength (dynes/cmz)

. target material dynamic hardness (dynes/cmz)

target material dynamic shear strength (dynes/cmz)
projectile impact velocity

crater shape factor

a=0.75if p > dh/2

@=1.00if p < d /2
projectile material mass density (gm/cms)
target material mass density (g'm/cms)

target material dynamic yield strength (dyneslcmz)

Material Properties

10

B, =1.27 x 10 dynes/cm2

t

C =5.10 x 105 cm/sec

t

E =17.38 x 10 N/m?

B-5
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S = 2.83 x 109 dyne.'?./cm2
St = 6.37 x 1()10 dynes/cm2
y, = 2.78 x 10° d 2
¢ = 2.718x ynes/cm
= 3
Dp = 2.71 gm/em

b, = 2.84 gm/em’

= 1.85 x 1010 ‘dynes/cm2

‘yt
H, = 130 kg'/mm2

Fwtbt b Lo
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HYPERVELOCITY IMPACTS ON SPACE DETECTORS:
DECODING THE PROJECTILE PARAMETERS

J.A.M. McDONNELL and K. SULLIVAN
Unit for Space Sciences
The University of Kent at Canterbury
Canterbury, Kent CT2 7NR
United Kingdom

ABSTRACT. Hypervelocity impacts in space have been used as a 1ol for the study of the particulate environment
throughout the space age. Detectors, both designed and “incidenwl”, have utilised cralering, penetration,
momentum and (Lransient) plasma 1o detect such projectiles. Decoding the impacting projectile parameters from
such target behaviour has often been limited by the calibration data available in the mass-velocity plane, and by the
need for data to extend over a range of projectile dimensions from sub-micrometre to centimetre scales. LDEF's
relum o Earth with & wide variety of target materials and a very high definition of the particulate flux, along with
its angular dependence, has provided the opportunity to accurately assess environmental impact data. Yet it forces
the issue of which formulae are appropriate in this size range and which formulae can reliably extend over the wide
range of velocities and particulate size regimes. The analysis of existing hypervelocity impact daw for iron
projectiles leads to ballistic limit penetration formulae which exiend over orders of magnitude of larget material
as well as velocity. Although not explicitly calibrated for differing projectile

densities and relative strengths
densities, the form of the relationship (and established by other data) readily lends itself to the incorporation of the

eflects of projectile density.

L. The Hypervelocity Impact Data

Hypervelocity penetration studies on thin foils, of thicknesses between 0.8 pm and 4.8 um, have
been carried out by McDonnell (1970, 1979) using a 2 MV Van der Graaff Accelerator. Since
experiments were limited to using an iron dust source as projectiles (due to the nature of the

electrostatic accelerator and dust availability) a range of impactor-target density ratios was
investigated by varying the target maierial. The density range of materials explored ranges from
ensity 21.45 gem3. The

mylar (a plastic polymer of density 1.395 gem-3), to platinum foils of d
full da:a set, incorporating data by McDonnell (1970, 1979) investigates iron impacts onto various
metallic and mylar foils between velocities of 1.0 kms*! 10 16 kms-1.

The experimental program is given by McDonnell (1970). For each impact event the particle
diameter, d, the perpendicular impact velocity, V, the penetration crater hole diameter, Dy, and the
foil thickness, f, were measured. Each of these impact events, on a (fd)-V plot, is then associated
Wwith its penetration diameter, also normalised to the foil thickness, (Dy/f). For each projectile and
target combination, the set of data obtained this way can then be plotied to define contours of

©u/n.

For a given impact velocity and foil thickness, the crater diameter increases with the particle
size. As the particle size is decreased, in the experiment the hole diameter 100 decreases, until a
minimum detectable hole size is reached. This then represents the marginal penetration cut-off:
the ballistic limit is defined by the contour a proaching the asymptote of Dy/f = 0. These
marginal penctration limits (very close to the barlistic limit) established for each projectile-target
scenario are shown in Figure 1 as heavy lines. In some cases, the limiting threshold of the
experimental technique was insufficient to define well this marginal cut-off, so that an upper limit
of perforation could only be achieved. This is seen to occur where the smallest (Dy/f) ratio

observed is not a heavy line in Figure 1,

The equations of these penetration contours can be defined, and so,
scenario, a penetration limit established. Table 1 gives the results o
marginal perforation limits (f/d) are given as functions of velocity; the ve
these are measured are also stated, along with their (Dp/f) limiting values.

for each target and projectile
f this for each data set. The
locity regimes in which
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Table 1. The marginal penetration limits of ([/d) along with their (Dp/) limits ase deﬁneéor iron projectiles
impacting the ten wrget materials between the velocities gives. Other data used in this ;:fgier for Aluminium
targets extends 10 16 kms-1. =

Projectile Target Margina D &lodi
Material Mategn'al Pcrfomign Limit Lin%; 3 l?kc:;);.e)angc
Iron Aluminiurn f/d=1.298V0.586 0.6 < 2644
Iron Copper £/d=0.518 V0699 1.5 Z 3.5-5.6
Iron Stainless Siee] {/d=0.419V0.753 1.4 7 2.5-3.7
Iron Iron f/d=0.517V0.581 1.4 - 3.0-4.0
Iron Silver £/d=0.5990.708 1.9 24253
Iron Platinum £/d=0.270V0-549 22 52.0-3.6
Iron Gold £/d=0.542 V0-548 Q.0 £1.2-35
Iron Titanium £/d=0.581V0.737 <l.2 -3.8-6.7
Iron BerylliumCopper f/d=0.373V0.894 <15 '5.1-6.5
Iron - Mylar f/d=1.72] V0582 <0.3 23.4-4.8
10 ’ ' v e —
v}
I Mylar03—""_

-
N
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L
—
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&
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Figure 1. Perforation limits for all target materials with their normalised Dyy/f valuzs for irez.  projectiles

2.  Development of a Penetration Formula

It is seen from the data in Figure 1 that the (Du/f) contours are parzilel nez to marginal
perforation: noting the exﬁrimemal measurements of aluminium (which extend irghis fashion to
16 kms-1) and the similar behaviour of all these ductile targets over the limited range compared in
P‘:furc 1, it is likely that all these marginal perforation limits can be extrapolated to very high
velocities. A general equation describing all these projectile-target scenarios is, Fowever, first
established in the measured range by incorporating certain properties of the projecjle and target
materials. Looking at Table 1 and Figure 1 it is clearly seen that the (f/d) margigg! penctration
limit of the iron—*mylar combination is very different to the iron—platinum data 2 This may be
explained by the fact that platinum has a density some fifteen times higher than thagpf mylar (see
Table 2). This introduces the idea that a generalising equation of the complete dataget must have
a projectile-target density ratio scalinf factor contained within it. Examining data iggFigure 1 and
the material properties given in Table 2, it is clear that there is a correlaton betiieen the (f/d)
(_-limiting contour and the target density, with the material density decreasing as thg (f/d) values
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because a lower density target material would require a
ation, relative 10 2 high density material, with
f the material density lead to an increase of the

increase. This is seen 10 be realistic,
greater foil thickness in order to prevent perfor
deeper crater profiles. Therefore, lower values 0
marginal penetration limit (f/d). .

But it is also evident that a density scaling factor slon¢ would not completely satisfy the data.
This is demonstrated by ordering the materials a 1o their relagve levels on Figure 1, and
comparing this with the magnitudes of their densities. Beginning with the greatest (f/d) values, the
materials are, with their densities, mylar (1.395 gem-3), aluminium (2.71 gom3), titaniumysilver
(8.9/8.2 gem-3), gold/iron/swinless steel (19.3/1.87/1.8

(4.54/10.5 gem-3), copper/beryllium copper cm® /
gcm'é). ang platimm? l2‘;1.45 gem3). Itis observed that the penctration contours for iron and

stainless steel are too ‘low’ on Figure 1 with respect 10 copper and beryllium copper. according to
their relative densities. Also, the gold is 100 ‘high’ relative to the iron and stainless steel; silveris

100 ‘high' relative 10 titanium.

-3y and tensile suengths et materials.

Table 2. Densities (gem

Material
2.71 8.9 7.8 7.87 10.5 21.45 19.3 4.54 8.2 1.395
80 150 460 300 150 140 120 620 490 40

Obviously, another material property is necessary to smooth out these differences. Hill (1990)

introduced into this ballistc limit scenario the dependency on the target material tensile strength.
On Figure 1, it can be envisaged that a high strength material would imply a lower (f/d) line than
that of a lower srength material of the same density, because the soonger the target is, the thinner

fore the latc stage crater expansion ceases 1n proximity to the rear face.

tensile suength) dominates at the end of this marginal perforation process. I
strengths of the available materials it is apparent that iron and

i ile strengths, along with titanium, whereas copper,
beryllium copper, silver and gold have relatvely Jow tensile swengths. Overall, if the target tensile
strength is included into the general marginal perforation formulation, then this appears 10 explain
the discrepancies that a simple density scaling introduces. Therefore, for a particle of diameter, d
(cm], and density, PP (gemr3), impacting a target of density, pT [gem'3], tensile smength, OT
{MPa), and thickness, f [cm], at 8 perpendicular impact velocity of V {kms-1], the marginal

rforation limit of the form given below is proposed, where the parameters A,B,C,andDarcto

_determined. The target tensile strength is referenced to that of aluminium, where GAl = 80

MPa. ‘
£ Pp B, OarnC
'&‘A('l) (&) v® (eqn 1)
Pr Or

The form of the parameter D for the experimental microparticle data set can be established.
Studying the marginal penetration equations in Table 1, the velocity exponents are observed 10
luded that there appears to be no

range from between 0.548 through to 0.894, but it may be conc
correlation between these and their target material propertics considered here. Furthermore, Figure
1 demonstrates the similarity between the marginal penctrauon slopes (being the velocity
exponents). It is therefore concluded that the velocity exponents have no significandy large
material dependency, and to establish a general formula we take the mean of these gradients,
calculated to be 0.664. This is then the value of the parameter D. It is now .reqmred to solve
e%uation 1 for A, B, and C, with D equal to 0.664. Note however (¢.g. sce equatons 7, through to
10), that this exponent and those in equation 2 will involve, at this stage, an experimental bias due
to the lack of a weak, but significant, dimensional scaling within the measurement range.
Analysis using a three dimensional method of least squares minimisation is used to obtain the
tion 1. This is calculated at 2 velocity of 4

best possible fit between the data in Table 1 and equa
i imes in which the measurements were taken. The

kms-1, representing the mean of the velocity regt
solution gives the generalised marginal penetration formula stated below.
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A plot of (f/d) as qiven by equation 2 is plotted against the (f/d) data of Tatg 1 in Figure 2 at

velocity of 4 kms'1. A perfect match between the generalised equation and He data would sho
all the data points on the saight line. Figure 2 shows that the generalisedzzquarion comparc
favourably with the data, when one considers that the source data for the progctle-target densit
ratios and tensile suengths both cover more than a decade in magnirude; sourcEdata for the densit
ratio ranges from 0.37 0 5.64, whilst the tensile strength, compared to the Seferenced value ¢
aluminium, ranges from 0.13 to0 2.0. Although the fit was calculated at thegnean experiments
velocity of 4 kms-], so that the equation would best describe the acrual data zhis equation migh

(based on the aluminium target calculations) be used at higher velocides.

0.664
(eqn 2)
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Figure 2. Comparison between the data and equation 2.

s used in these experiments ranged from 0.8 pm to 4.7551m. The projecal
¢ marginal perforation limits were in the size range Fetween 0.6 pm ane-
6.8 pm, with a mean of 2.3 um. Suicdy speaking, the generalised penetratics equation given b:
equation 2, describes the hypervelocity impact scenario within these limits. Bz equation 2 can bx
extended to incorporate a particle dimension scaling factor, validating gis equation up i«

and therefore unifying the microscopic .and magroscopic margina-

millimetre sized projectiles, ! COp! af !
i imes. This is achieved by companng hypervelocity impact dag at both these sizc

ranges. The McDonnell data presented in figure 1 and equation 2 applies to prexectles with a meal
diameter of 2 pum, described by equation 2; Summers (1959) relates the perfgation depth (P) fo
ets to the projectile diameter; for projectiles of 5 mm in diameter, yis=ling:

W
w
W
E
i i \mlﬂk:m il ok
[FY
w

The foil thicknesse
diameters used to define th

plate targ =
0.667 0.667 =
P_aas(22) (%) ford=5ma (eqn 3)

If these two equations arc & plied to iron projectiles impacting aluminium, 5t 4 kms1, then thi
leads to f/d = 2.248 ford=2 ;Il,m and P/d= .834 ford= g mum; the speed of gpund in aluminiuce
C, is taken as 5.105 kms-}. The microfoil data, referring 10 optically deiggtable perforanont
corresponds for aluminium targets on the "knee” in the hole growth curve gs the particle siz:
increases, namely a value of Dy in the region of the foil thickness, whereas thgstnct ballistic limi
refers to Dy=0. An over-estimate of some 10% may thereby result, but thexomparison clearl
shows that the dimensional scaling increases the marginal limit ratio #/d, by same 50% over thre
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orders of magnitude in particle size. From this comparison 2 scaling factor index is calculated by
interpolating linearly on the logarithmic scale: :

index = [ log (3.894 / 2.648) } / [log (5000/ 2) ] = 0.049 (eqn 4)
This value would represent the exponent of the particle dimension, taking on the form:
0.049 (eqn 5)

f/ded
(all other parameters constant)

This is seen to compare very favourably with the dimensional scaliné factor given by Fish and
Summers (equation 8), and used by Naumann (equadon 10), and our-Palais (equation 11),
namely 0.056. The Pailer and Griin equation (9) by contrast gives a value of 0.2 (see next section).
The simple dimensional scaling we calculate shows such close agreement with a well established

this accepted value of 0.056. The resultant

and widely used-value, that we must adhere to 2 4 f 0.0. ¢
f 0.049 and 0.056 over 3 magnitudes in particle diameter is less than

divergence between indices o ) _ ! i
ctor to the penetration formula of equation 2 expressing d in cm and

5%. Applying this fa 1 : 2 2
normalising for this term, gives a relationship of the form shown in equation 6, where the particle

diameter is scaled to 2 pm:

¢ o6« Pp 0476 L Oy (013 o e
$=1.023¢ (2) (&) v (eqn 6)
Pr Ot

In a further, but very imporiant, consideration we must note that although equation 6 would
represent and scale the microparticle data acquired from pum to cm dimension data, it is never the
less acquired from a finite range of 'Eanicle diameters. The electrostatic accelerator projectile
“mass spectrum” which is used for this data set, for example, shows dependency on velocity,
namely m « 1/ V4 and hence because d e« m1/3 we find that the particle diameter o< 1/ V‘z.
What 1s important, however, is the change in particle size along the observed f/d contour. The f/d
values at low velocides refer 10 measurements from larger particles than at higher velocities. This
change of scale for a set of measurements on one foil is, therefore, dictated by the measured
contour itself (namely by the particles selected) rather than by the spectrum of available pasticles.
This effect of dimensional scaling within the measurement range thus leads to a bias to any of the
observed contours of marginal or supra-marginal perforation, and leads to an apparent reduction in
the velocity exponent. The apparent dimensionally independent velocity exponent (i.¢. of the f/d
Jocus for constant particle size d) can be shown to be 1/1.056 of its ‘true’ value. The ‘true’ value
average value for this set of 10 target materials surveyed is thus 0.664 x 1.056 = 0.701 in a
dimensionally scaled formulaton, We must re-normalise (6) with this exponent change and finally

we have:

£ 0.970 40956 {grz}o'm (ga)"'"‘ v0.701
d or (eqn?)

McDonnell 1992A and is the scale corrected version of equation
1 and d in cm. The results arc compared to other penetration

relationships in Figure 3; the equation yields very favourable agreement with experimentally
determined ballistic limits for particles of varying dimensions, and velocity;it also encompasses a
wide range of target densitics and tensile strengths and in decoding likely projectile parameters
from meteoroids and space debris is not likelyto be in error by more than some 10% for arbitrarily

chosen parameters.

For specific projectile target combinations where calibration data is available at appropriate
velocity, the source data must be used. For example calibration data sPeciﬁc to iron projectiles
impacting aluminium microfoils for Dy = f at velocides up to 16 km §* dyiields f/d = 0.79 y0.763
(McDonnell 1969). We can now update this with better insight into the dimensional scaling

This equation (7) is termed
6 (Sullivan 1992); Vis in km s~
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diil

bias within this data which will permit applications to ‘dimensions outsgle the range of
measurement. This leads to dimensionally scaled formulation normaliseg to the 16kms-!

measurement which tracks better the velocity dependence for this particular targs configurarion:
f/d = 1.272 V0.806 40.056

This equation is termed McDonnell 1992B and agrees well with ths experimentally

(eqn 8)

il o il

determined ballistic limits of f/d = 6.55 at 16 km s°1 for Dy /f =1 and d=0.24um _
If we compare the results of equation (7) for iron particles impacting
specific iron onto aluminium formula of equation (8), we find;

f/d = 0.970 40056 (7.3/2.7)0.476 v0.701
= 1.607 d0-056 y0.701 = 1122 d0.056 gt V= 16km s°1

Zluminium 1o the

(eqn 9)

BRI o o B 4l

c.f. from equation (8)- f/d = 1.272 d0.056 V0.806 = 1]1.88d0056atV=15kms"

We note a modest divergence, from the application of the generalised egsation; for other
conditions this divergence could be greater, and recommend, where available, Srmulae derived
from data closest to the particular impact conditions. In further developmesg of penetration
ralationships, and taking note of the swength and density functional relationshipEfound in the 10
target survey, we can extend the iron onto aluminium data, which now incorporges dimensional
scaling, to cope with different target strengths and densities and (but with lesizaccuracy in the
lattter ) for different projectle densides. This yields : . =

76 0.476
£ 1.272 0056 (EL)“ ‘m) oAl
L=12724 £ - ( Or}

0.134
0.806

(eqn 10)

[E ISR

3.  Previous Penetration Formulae: Comparison.

Other widely used equations are maybe usefully compared, having been convcéd to the same
units as used to define equation 1 and with d in cm. The foil ductility, €, is dimeiisionless, and o
is the impact angle between the target normal and projectile rajectory. We compag for example

f 0.763

i ilii

3=0.79V McDonnell _579) (eqn 11)
% = 0,57 d%0%6 ¢ 0-0%¢ (-EE )o's N Fish & Summers {%65) (eqn 12)
T E
2m0.772d%% %% 0™ p7* (V cose) ™ Pailer & Grin :.5%980) (ean13)
é_ = g0-0%6 p,°,"2 Y878 | Naumann ( :? 66) (eqn 14)
Z=0.635d"% pp” V7 Cour-Palais (?9) (ean15)

i

The McDonnell (1979) equation (as described) was used, because of its validatzn at velocities
higher than light gas gun data, to extrapolate to 68 kms-! for application t6 the Gigtto probe with
its comet P/Halley encounter in 1986. Because this equation explicitly described Fon projectiles
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impacting aluminium, no density function or particle size-scaling factor was used; but this has
now been remedied. ] ) . .

The other penctration equations stated above are scaled for particle siz¢, foil ductility and
density. Comparisons can now be made between their parametric exponents. The velocity
exponent of the equations developed when now corrected for the dimensional bias agree

remarkably well with Fish and Summers, and the Naumann values. The particle and target
the other corresponding values where appropnate.

property exponents also agree very well with v .
The exception to this is the Pailer and Griln equaton, in which the partcle density scaling factor is
approximately 50% higher than all other values. The Pailer and Griin equation also has a particle
size-scaling factor some four times higher than all other values.

Equations are plotted in Figure 3 as a functon of projectile size at a constant velocity of
4 kms"1, scaled for iron projectles impacting aluminium- This diagram illustrates that the Pailer
and Griln equation, used to interprel data from the Solar Maximum Mission (SMM) (Laurance and
Brownlee, 1986), does not generally agree with other perforation equations. It can also be seen
that, overall, equations by Fish and Summers, Cour-Palais, and the dimensionally scaled equation
developed in this paper (the dashed line), are very agreeable for the velocity and projectile size
ranges shown here. Although the McDonnell (1979) equation, matches well with these three
cquations at the small size range in which the data was taken, we se€ that it becomes too low,
outside its measurement range at the larger sizes and demonstrates the need for the dimensional

scaling now inroduced.

Scaled for Fe > Al at 4km/s for 2 micron particle .
v ....1.l v— ...".5 v ..--...! — . -_-N(in4)

" == P &G (eqn 13)

i i 1 -~ C-P(eqn19)
- < (McD &S (ean 6)
-~ ~\ p Mch992A(eqn7)

/ .. ‘\(Mco 19928 (eqn 8)
s McD 1992C (eqn 10)

nl Se
eq ~F&S(qnl2)

223
L4

2 4 A A kLAl

l A $ A Al nl: A $

0.0001 0.001 0.01 0.1 1
Projectile diameter (cm)

Figure 3. Marginal perforation equations as a function of projectile diametcr. The equation developed here

is shown as the dashed line.

4. Conclusions

Generalised marginal penctration equations arc then available, developed with data from

micrometre sized projectiles and scaled to the millimewme dimension by incorporation of a well
established scaling factor. The equations compare favourably to some other equations over this
entire projectile size dornain, and the parametric exponents also proved to be consistent. The
exception to this is the Pailer and Grlin equation, in which harsh dimensional scaling does not
accurately represent the very small projectile size regime. This may be due to the fact that only a
sample of the McDonnell thin foil Penetmion data were taken in the development of the Pailer and
Grin (1980) equation. The choice of penctration equation depends on the closeness of an
experimental configuration to the calibration data available. Table 3 shows values calculated for
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different formulae to two situations where impact calibration is available a: 3 and 16 kms*!. N

of guidance for the choice of appropriate equations from the new formulatigas are also given.

V%iu?s for Fe onto AT
Names Equauons 4 kg 16 kms-1
dp=§xm dp=0.24umr
476 =
McD &S d"f“ 1,023 0056 (Ez)o (EM)DJM V0.664 2% 590
1992 (egn 6) T or -
McD £ - 0070 4005 ( 22) 0.47%6 (g&) 0134 o 701 2r:§ 6.20
1992A (egn7) | ¢ pT or
McD L-079 vore 2275 6.55
1979 (eqn 11) : | Dy=f~BI
McD | af- = 1.272 0056 /0806 £ 655
1992B (eqn 8) | py=f=BL
McD . 1.272 @006 (EEL)O'”‘ p—N-JO.ﬂé“ 2417 655
1992C (eqn 10) |4 Rl T
cont'd.. (9-51)0 V0.806
or - |
Acwal Daa T 791 533 |
"Hole diameter at 10% above Ballisac Limit Dy =0&f Dy=1

M

il

Table 3. Comparison of penetration formulae developed in this work. Values used for somputaion areaip ;=
2.71 (gkm3), e 787 (gem3); d (io cm) yields: (2um)0-056 = 0.6207; (0.24)1mm)0- 6 = 0.5512;
Pr/PAN*476 =1 661 '

McDonnell 1979 {eqn 11). Iron onto Aluminium: no dimensional scaling a::
biased by dimensional range in data: calibrated at 16 kms-! for dp =0.24 pym. -

ol i

B

velocity exponean

il

TIRERIET

Extends McDonnell 1979 to remove scaling Sias in data and t
dimensionally scale. Applics therefore to a wide range of dimensions {z.g. mi=ons to centimetrzs
and velocities from 4 to 16kms-! for iron projectiles onto aluminium. E

McDonnell & Sullivan 1992 (eqn 6) Covers wide range of metallic target stiggths and densities
(including mylar) but has residual errors for some materials calibrated; velocic=range is q-6km§'1;
note that the velocity exponent is an average for the 10 targets and is biassZ by the dimension

range within the data. :

ol

L i 0

i

As McDonnell & Sullivan 1992, but rersoves iz dimensional bias
within the measurement range. Applies to a wide range of target strengths a==l densities, though
the velocity exponent is the 10 target average and also small residual erzors for Some materials will

exist; therefore applies to wide range of velocities (4 kms-! to 16 kis-! at lesst) and dimensions
(microns to centimetres).

Derived from McDonnell 1979, for iron grojcc_xiizg onto aluminium
targets but includes removal of diménsional bias, the inclusion of dzfncns:o;gl scaling and the
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functional form for variation of particle density, target density and target soength. It is direcily
applicable, therefore, from micron scale to centimetue scale and a wide range of velocities. Less
accurately, it offers the opportunity to scale to arbitrary projectile-target configurations which may

not be available from calibration. ) ) )
As an alternative approach to considering size scaling as an effect which can be demonstrated
(1992) have recently presented arguments for

and quantified and yet is unexplained, Walsh et al. (1 r
accounting for scale by means of a target saength which depends upon stain rae. Our functional
form presented for accounting for scale and (size independent) swength separately could therefore

be reformulated in a scale-free form and a size dependent strength relationship.
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